20.在等差數(shù)列{an}中,a10=30,a20=50.
(1)求數(shù)列{an}的通項(xiàng)an;
(2)令 bn=2${\;}^{{a}_{n}-10}$,證明數(shù)列{bn}為等比數(shù)列;
(3)求數(shù)列{(2n-1)bn}的前n項(xiàng)和Tn

分析 (1)等差數(shù)列{an}中,由a10=30,a20=50.解得a1=12,d=2,由此能求出數(shù)列{an}的通項(xiàng)an
(2)由an=2n+10,知bn=${2}^{{a}_{n}-10}$═22n=4n,由此能夠證明數(shù)列{bn}是等比數(shù)列.
(3)(2n-1)bn=(2n-1)4n,由此利用錯(cuò)位相減法能求出數(shù)列{(2n-1)bn}的前n項(xiàng)和Tn

解答 解:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
由an=a1+(n-1)d,a10=30,a20=50,
得$\left\{\begin{array}{l}{{a}_{1}+9d=30}\\{{a}_{1}+19d=50}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=12}\\{d=2}\end{array}\right.$.
∴an=12+2(n-1)=2n+10;
數(shù)列{an}的通項(xiàng)an=2n+10;
(2)證明:∵an=2n+10,
∴bn=${2}^{{a}_{n}-10}$=22n=4n,
∴∴$\frac{_{n+1}}{_{n}}$=$\frac{{4}^{n+1}}{{4}^{n}}$=4,
∴數(shù)列{bn}是以首項(xiàng)b1=4,公比為4的等比數(shù)列.
(3)∵(2n-1)bn=(2n-1)4n,
∴Tn=1•4+3•42+…+(2n-1)4n,①
4Tn=1•42+3•43+…+(2n-3)4n+(2n-1)4n+1,②
①-②,得-3Tn=4+2×42+…+2×4n-(2n-1)4n+1,
=$\frac{2(1-{4}^{n})}{1-4}$-4-(2n-1)4n+1
=$\frac{2}{3}$(4n+1-4)-4-(2n-1)4n+1,
=$\frac{5-6n}{3}$×4n+1-$\frac{20}{3}$,
Tn=$\frac{6n-5}{9}$×4n+1+$\frac{20}{9}$,
數(shù)列{(2n-1)bn}的前n項(xiàng)和Tn,Tn=$\frac{6n-5}{9}$×4n+1+$\frac{20}{9}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的證明,考查數(shù)列的前n項(xiàng)和的求法.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意錯(cuò)位相減法的合理運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=sin(2x+φ)的圖象關(guān)于直線x=-$\frac{π}{8}$對稱,則φ的可能取值是( 。
A.$\frac{3π}{4}$B.-$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如果直線y=ax+2與直線y=3x-b關(guān)于直線y=x對稱,那么a+b=$\frac{19}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列0,1,0,1,0,1,0,1,…的一個(gè)通項(xiàng)公式是(  )
A.$\frac{{{{(-1)}^n}+1}}{2}$B.$cos\frac{nπ}{2}$C.$cos\frac{(n+1)π}{2}$D.$cos\frac{(n+2)π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.平面內(nèi)給定三個(gè)向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(-1,2),$\overrightarrow{c}$=(2,1).
(1)求滿足$\overrightarrow{a}$=m$\overrightarrow$+n$\overrightarrow{c}$的實(shí)數(shù)m,n;
(2)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow$-$\overrightarrow{a}$),求實(shí)數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=ex-x-2,k為整數(shù),且當(dāng)x>0時(shí),(x-k)f′(x)+x+1>0恒成立,則k的最大值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在極坐標(biāo)系中,直線$ρcos(θ-\frac{π}{4})=\sqrt{2}$與曲線$ρ=\sqrt{2}$的公共點(diǎn)個(gè)數(shù)是( 。
A.0B.1C.2D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.20世紀(jì)30年代,德國數(shù)學(xué)家洛薩---科拉茨提出猜想:任給一個(gè)正整數(shù)x,如果x是偶數(shù),就將它減半;如果x是奇數(shù),則將它乘3加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1,這就是著名的“3x+1”猜想.如圖是驗(yàn)證“3x+1”猜想的一個(gè)程序框圖,若輸出n的值為8,則輸入正整數(shù)m的所有可能值的個(gè)數(shù)為( 。
A.3B.4C.6D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)的定義域是R,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax+1(x≤0)}\\{8ln(x+1)+1(x>0)}\end{array}\right.$  (a為小于0的常數(shù))設(shè)x1<x2 且f′(x1)=f′(x2),若x2-x1 的最小值大于5,則a的范圍是(-∞,-4).

查看答案和解析>>

同步練習(xí)冊答案