12.函數(shù)f(x)=5x2+1(  )
A.在(0,+∞)內(nèi)是增函數(shù)B.在(1,+∞)內(nèi)是增函數(shù)
C.在(-∞,0)內(nèi)是增函數(shù)D.在(-∞,1)內(nèi)是增函數(shù)

分析 根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:f(x)的對(duì)稱軸是x=0,開(kāi)口向上,
故函數(shù)在(0,+∞)遞增,
故選:A.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,四棱錐S-ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=CD=SD=AD=2AB=2,M,N分別為SA,SB的中點(diǎn),E為CD的中點(diǎn),過(guò)M,N作平面MNPQ分別與交BC,AD于點(diǎn)P,Q.
(Ⅰ)當(dāng)Q為AD中點(diǎn)時(shí),求證:平面SAE⊥平面MNPQ;
(Ⅱ)當(dāng)$\overrightarrow{AQ}=3\overrightarrow{QD}$時(shí),求三棱錐Q-BCN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知x>0,y>0,且$\frac{1}{3x+y}$+$\frac{2}{x+2y}$=2,則x+y的最小值是$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x-2}{x+2}$ex,g(x)=2lnx-ax(a∈R)
(1)討論f(x)的單調(diào)性; 
(2)證明:當(dāng)b∈[0,1)時(shí).函數(shù)h(x)=$\frac{{e}^{x}-bx-b}{{x}^{2}}$(x>0)有最小值,記h(x)的最小值為φ(b),求φ(b)的值域; 
(3)若g(x)存在兩個(gè)不同的零點(diǎn)x1,x2(x1<x2),求a的取值范圍,并比較g′($\frac{{x}_{1}+2{x}_{2}}{3}$)與0的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.?dāng)?shù)列{an}滿足a1=2,an+1=$\frac{2(n+2)}{n+1}$an(n∈N*),$\frac{{a}_{2017}}{{a}_{1}+{a}_{2}+…+{a}_{2016}}$=( 。
A.$\frac{1009}{1008}$B.$\frac{2015}{1007}$C.$\frac{2016}{2015}$D.$\frac{2015}{2014}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.定義運(yùn)算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,將函數(shù)f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinωx}\\{1}&{cosωx}\end{array}|$(ω>0)的圖象向左平移$\frac{2π}{3}$個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則ω的最小值是( 。
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{7}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.向量$\overrightarrow{AB}$對(duì)應(yīng)復(fù)數(shù)-3+2i,則向量$\overrightarrow{BA}$所對(duì)應(yīng)的復(fù)數(shù)為3-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線x2+$\frac{y^2}{{{b^2}-4}}$=1的焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為( 。
A.y=±$\frac{1}{2}$xB.y=±$\sqrt{3}$xC.y=±2xD.y=±$\frac{{\sqrt{3}}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積=$\frac{1}{2}×$(弦×矢+矢2),弧田(如圖)由圓弧和其所對(duì)弦圍城,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,現(xiàn)有圓心角$\frac{2π}{3}$,半徑為6米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是($\sqrt{3}≈1.73$)( 。
A.16平方米B.18平方米C.20平方米D.25平方米

查看答案和解析>>

同步練習(xí)冊(cè)答案