2.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積=$\frac{1}{2}×$(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦圍城,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角$\frac{2π}{3}$,半徑為6米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是($\sqrt{3}≈1.73$)( 。
A.16平方米B.18平方米C.20平方米D.25平方米

分析 在Rt△AOD中,由題意OA=4,∠DAO=$\frac{π}{6}$,即可求得OD,AD的值,根據(jù)題意可求矢和弦的值,即可利用公式計(jì)算求值得解.

解答 解:如圖,由題意可得:∠AOB=$\frac{2π}{3}$,OA=6,
在Rt△AOD中,可得:∠AOD=$\frac{π}{3}$,∠DAO=$\frac{π}{6}$,OD=$\frac{1}{2}$AO=$\frac{1}{2}$×6=3,
可得:矢=6-3=3,
由AD=AO•sin$\frac{π}{3}$=6×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
可得:弦=2AD=2×3$\sqrt{3}$=6$\sqrt{3}$,
所以:弧田面積=$\frac{1}{2}$(弦×矢+矢2)=$\frac{1}{2}$(6$\sqrt{3}$×3+32)=9$\sqrt{3}$+4.5≈20平方米.
故選:C.

點(diǎn)評 本題考查扇形的面積公式,考查學(xué)生對題意的理解,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=5x2+1( 。
A.在(0,+∞)內(nèi)是增函數(shù)B.在(1,+∞)內(nèi)是增函數(shù)
C.在(-∞,0)內(nèi)是增函數(shù)D.在(-∞,1)內(nèi)是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足3Sn=(n+2)an(n∈N*),其中Sn為{an}的前n項(xiàng)和,a1=2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前n項(xiàng)和為Tn是否存在無限集合M,使得當(dāng)n∈M時(shí),總有$|{{T_n}-1}|<\frac{1}{10}$成立?若存在,請找出一個(gè)這樣的集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-ax(a>0,且a≠1).
(1)當(dāng)a=e,x取一切非負(fù)實(shí)數(shù)時(shí),若$f(x)≤b-\frac{1}{2}{x^2}$,求b的范圍;
(2)若函數(shù)f(x)存在極大值g(a),求g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)是偶函數(shù)的是( 。
A.y=tan3xB.y=cos2x+1C.y=2sinx-1D.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知平面直角坐標(biāo)系內(nèi)三點(diǎn)A、B、C在一條直線上,滿足$\overrightarrow{OA}$=(-3,m+1),$\overrightarrow{OB}$=(n,3),$\overrightarrow{OC}$=(7,4),且$\overrightarrow{OA}⊥\overrightarrow{OB}$,其中O為坐標(biāo)原點(diǎn).
(1)求實(shí)數(shù)m,n的值;
(2)設(shè)△AOC的重心為G,且$\overrightarrow{OG}$=$\frac{2}{3}$$\overrightarrow{OB}$,求cos∠AOC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知各項(xiàng)為正數(shù)的數(shù)列{an},滿足$\frac{1}{{{a_{n+1}}}}=\frac{1}{{{a_n}+1}}$,n∈N*,其中a1=1,Sn為其前n項(xiàng)的和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列$\left\{{\left.{\frac{1}{S_n}}\right\}}\right.$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$|{\overrightarrow a}|=3,|{\overrightarrow b}|=2$,且$\overrightarrow a,\overrightarrow b$的夾角為120°,求:
(1)求$({2\overrightarrow a+\overrightarrow b})•({\overrightarrow a-2\overrightarrow b})$的值;
(2)求$|{2\overrightarrow a+\overrightarrow b}|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場研究人員為了了解共享單車運(yùn)營公司M的經(jīng)營狀況,對該公司最近六個(gè)月內(nèi)的市場占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率y與月份代碼x之間的關(guān)系.求y關(guān)于x的線性回歸方程,并預(yù)測M公司2017年4月份的市場占有率;
(Ⅱ)為進(jìn)一步擴(kuò)大市場,公司擬再采購一批單車.現(xiàn)有采購成本分別為1000元/輛和1200元/輛的A、B兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導(dǎo)致車輛報(bào)廢年限各不相同.考慮到公司運(yùn)營的經(jīng)濟(jì)效益,該公司決定先對兩款車型的單車各100輛進(jìn)行科學(xué)模擬測試,得到兩款單車使用壽命頻數(shù)表如下:

報(bào)廢年限
車型
1年2年3年4年總計(jì)
A20353510100
B10304020100
經(jīng)測算,平均每輛單車每年可以帶來收入500元.不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率.如果你是M公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款車型?
參考數(shù)據(jù):,$\sum_{i=1}^6{({x_i}-\overline x)({y_i}}-\overline y)=35$,$\sum_{i=1}^6{{{({x_i}-\overline x)}^2}}$=17.5.
參考公式:
回歸直線方程為$\hat y=\hat bx+\hat a$其中$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

同步練習(xí)冊答案