2.橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$的左、右焦點分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內(nèi)切圓周長為π,A,B兩點的坐標分別為(x1,y1),(x2,y2),則|y1-y2|的值為$\frac{5}{4}$.

分析 由已知求出橢圓的焦點分別為F1(-3,0)、F2(3,0),△ABF2的內(nèi)切圓半徑r=$\frac{1}{2}$,△ABF2的面積S=$\frac{1}{2}$(|AB|+|AF2|+|BF2|)×r=5,再由△ABF2的面積S=${S}_{△A{F}_{1}{F}_{2}}+{S}_{△B{F}_{1}{F}_{2}}$=4|y2-y1|,由此能求出|y1-y2|的值.

解答 解:橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$中,a2=25且b2=16,
∴a=5,c=$\sqrt{25-16}=3$,
∴橢圓的焦點分別為F1(-3,0)、F2(3,0),
設(shè)△ABF2的內(nèi)切圓半徑為r,
∵△ABF2的內(nèi)切圓周長為π,∴r=$\frac{1}{2}$,
根據(jù)橢圓的定義,得|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=20.
∴△ABF2的面積S=$\frac{1}{2}$(|AB|+|AF2|+|BF2|)×r=$\frac{1}{2}$×20×$\frac{1}{2}$=5,
又∵△ABF2的面積S=${S}_{△A{F}_{1}{F}_{2}}+{S}_{△B{F}_{1}{F}_{2}}$=$\frac{1}{2}$×|y1|×|F1F2|+$\frac{1}{2}$×|y2|×|F1F2|
=$\frac{1}{2}$×(|y1|+|y2|)×|F1F2|=4|y2-y1|(A、B在x軸的兩側(cè)),
∴4|y1-y2|=5,解得|y1-y2|=$\frac{5}{4}$.
故答案為:$\frac{5}{4}$.

點評 本題考查兩點縱坐標之差的絕對值的求法,考查橢圓性質(zhì)的合理運用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,點D滿足$\overrightarrow{BC}$=3$\overrightarrow{BD}$,則( 。
A.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.隨機調(diào)查某社區(qū)80個人,以研究這一社區(qū)居民在17:00-21:00時間段的休閑方式是否與性別有關(guān),得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視看書合計
201030
45550
合計651580
(1)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認為在17:00-21:00時間段的休閑方式與性別有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某市文化部門為了了解本市市民對當(dāng)?shù)氐胤綉蚯欠裣矏,?5-65歲的人群中隨機抽樣了n人,得到如下的統(tǒng)計表和頻率分布直方圖.
(Ⅰ)寫出其中的a、b、n及x和y的值;
(Ⅱ)若從第1,2,3組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?
(Ⅲ)在(Ⅱ)抽取的6人中隨機抽取2人,用X表示其中是第3組的人數(shù),求X的分布列和期望.
組號分組喜愛人數(shù)喜愛人數(shù)占本組的頻率
第1組[15,25)a0.10
第2組[25,35)b0.20
第3組[35,45)60.40
第4組[45,55)120.60
第5組[55,65)200.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=x2-2x+a在區(qū)間(1,3)內(nèi)有一個零點,則實數(shù)a的取值范圍是( 。
A.(-3,0)B.(-3,1)C.(-1,3)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=\frac{x}{4}+\frac{a}{x}-lnx$,其中a∈R,且曲線y=f(x)在點(1,f(1))處的切線垂直于直線$y=\frac{1}{2}x$
(1)求實數(shù)a的值
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.《九章算術(shù)》是我國古代數(shù)學(xué)著作,書中有如下問題:“今有委米依垣內(nèi)角,下周八尺,高五尺,問:積及米幾何?”其意思為:“在屋內(nèi)墻角處堆放米(如圖,米堆為一個圓錐的四分之一),米堆底部的弧長為8尺,米堆的高為5尺,問米堆的體積及堆放的米各為多少?”已知一斛米的體積約為1.62立方尺,由此估算出堆放的米約有( 。
A.21斛B.34斛C.55斛D.63斛

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-ax(e是自然對數(shù)的底數(shù)).
(1)求f(x)的單調(diào)區(qū)間;
(2)討論關(guān)于x的方程f(x)=a的根的個數(shù);
(3)若a≥-1,當(dāng)xf(x)≥x3-$\frac{5a+3}{2}{x}^{2}$+3ax-1+m對任意x∈[0,+∞)恒成立時,m的最大值為1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,($\overrightarrow{a}$+$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

同步練習(xí)冊答案