11.已知函數(shù)f(x)=x2+x
(1)求f'(x);
(2)求函數(shù)f(x)=x2+x在x=2處的導(dǎo)數(shù).

分析 (1)根據(jù)題意,由函數(shù)f(x)的解析式,結(jié)合導(dǎo)數(shù)的計(jì)算公式計(jì)算可得答案;
(2)由(1)可得f'(x)公式,將x=2代入計(jì)算可得答案.

解答 解:(1)根據(jù)題意,函數(shù)f(x)=x2+x,
則f′(x)=2x+1,
(2)由(1)可得f′(x)=2x+1,
則f′(2)=2×2+1=5.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的計(jì)算,關(guān)鍵是掌握導(dǎo)數(shù)的計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知x,y∈R+,且x+y>2,求證:$\frac{1+x}{y}$與$\frac{1+y}{x}$中至少有一個(gè)小于2.
(2)函數(shù)f(x)=lnx-$\frac{a(x-1)}{x}$(x>0,a∈R).當(dāng)a>0時(shí),求證:函數(shù)f(x)的圖象存在唯一零點(diǎn)的充要條件是a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線2ax-by+2=0(a>0,b>0)被圓x2+y2+2x-4y+1=0截得弦長為4,則$\frac{4}{a}$+$\frac{1}$的最小值是( 。
A.9B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=$\frac{1}{x}$在[2,6]上的平均變化率為-$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)陣$(\begin{array}{l}{a_{11}}{a_{12}}{a_{13}}\\{a_{21}}{a_{22}}{a_{23}}\\{a_{31}}{a_{32}}{a_{33}}\end{array})$中,每行的三個(gè)數(shù)依次成等差數(shù)列,每列的三個(gè)數(shù)也依次成等差數(shù)列,若a22=6,則所有九個(gè)數(shù)的和為54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.$\frac{1}{(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i)^{4}}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知m∈R,復(fù)數(shù)$z=\frac{m(m+2)}{m-1}+({m^2}+2m-1)i$,當(dāng)m為何值時(shí):
(1)z∈R;
(2)z是虛數(shù);
(3)z是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.曲線y=x(3lnx+2)在點(diǎn)(1,2)處的切線方程為5x-y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某多面體的三視圖如圖所示,則該多面體外接球的表面積為$\frac{41}{4}π$.

查看答案和解析>>

同步練習(xí)冊(cè)答案