19.如圖為中國傳統(tǒng)智力玩具魯班鎖,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱,六根完全相同的正四棱柱分成三組,經(jīng)90°榫卯起來.現(xiàn)有一魯班鎖的正四棱柱的底面正方形邊長(zhǎng)為1,欲將其放入球形容器內(nèi)(容器壁的厚度忽略不計(jì)),若球形容器表面積的最小值為30π,則正四棱柱體的高為( 。
A.$2\sqrt{6}$B.$2\sqrt{7}$C.$4\sqrt{2}$D.5

分析 先求出球形容器的半徑的最小值r=$\frac{\sqrt{30}}{2}$,從而得到正四棱柱體的對(duì)角線長(zhǎng)為$\sqrt{30}$,由此能求出正四棱柱體的高.

解答 解:∵球形容器表面積的最小值為30π,
∴球形容器的半徑的最小值為r=$\sqrt{\frac{30π}{4π}}$=$\frac{\sqrt{30}}{2}$,
∴正四棱柱體的對(duì)角線長(zhǎng)為$\sqrt{30}$,
設(shè)正四棱柱體的高為h,
∴12+12+h2=30,
解得h=2$\sqrt{7}$.
故選:B.

點(diǎn)評(píng) 本題考查球、正四棱柱的高等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右頂點(diǎn)A(2,0),離心率e=$\frac{\sqrt{3}}{2}$
(1)求橢圓C的方程;
(2)設(shè)B為橢圓上頂點(diǎn),P是橢圓C在第一象限上一點(diǎn),直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,問△PMN與△PAB面積之差是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若復(fù)數(shù)z滿足$z+2\overline z=3+2i$,其中i為虛數(shù)單位,$\overline z$為復(fù)數(shù)z的共軛復(fù)數(shù),則復(fù)數(shù)z的模為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=xlnx-ax2在(0,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x+a|+|x-a|,a∈R.
(Ⅰ)若a=1,求函數(shù)f(x)的最小值;
(Ⅱ)若不等式f(x)≤5的解集為A,且2∉A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率等于2,其兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),${S_{△AOB}}=\frac{{\sqrt{3}}}{4}$,則p=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知cos($\frac{π}{6}$+θ)=-$\frac{12}{13}$,θ是銳角,求sinθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對(duì)于數(shù)列{an},若存在正整數(shù)T,對(duì)于任意正整數(shù)n都有an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.設(shè)b1=m(0<m<1),對(duì)任意正整數(shù)n都有${b_{n+1}}=\left\{{\begin{array}{l}{{b_n}-1\;\;({b_n}>1),\;\;\;}\\{\frac{1}{b_n}\;\;\;(0<{b_n}≤1)}\end{array}}\right.$若數(shù)列{bn}是以5為周期的周期數(shù)列,則m的值可以是$\sqrt{2}$-1.(只要求填寫滿足條件的一個(gè)m值即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z=a+bi(a,b∈R,b>0),且$\overline z={z^2}$,則z的虛部為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案