12.復數(shù)$z=\frac{1+i}{1-i}+(1-i)$的虛部等于0.

分析 利用復數(shù)的運算法則即可得出.

解答 解:$z=\frac{1+i}{1-i}+(1-i)$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$+1-i=$\frac{2i}{2}$+1-i=1的虛部=0.
故答案為:0.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則它的體積是( 。
A.$8-\frac{2π}{3}$B.$64-\frac{16π}{3}$C.$8-\frac{π}{3}$D.$64-\frac{12π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如表1:
年份x20112012201320142015
儲蓄存款y(千億元)567810
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,t=x-2010,z=y-5得到下表2:
時間代號t12345
z01235
(Ⅰ)求z關于t的線性回歸方程;
(Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于線性回歸方程$\hat y=\hat bx+\hat a$,其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0)的圖象與直線y=a(0<a<A)的三個相鄰交點的橫坐標分別是2,4,8,則f(x)的單調(diào)遞減區(qū)間是( 。
A.[6kπ,6kπ+3](k∈Z)B.[6kπ-3,6kπ](k∈Z)C.[6k,6k+3](k∈Z)D.[6k-3,6k](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)的一段圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{8}$個單位,得到y(tǒng)=g(x)的圖象,求直線$y=\sqrt{6}$與函數(shù)$y=\sqrt{2}g(x)$的圖象在(0,π)內(nèi)所有交點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.隨機 抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖所示
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在[-3,3]上隨機地取一個數(shù)b,則事件“直線y=x+b與圓x2+y2-2y-1=0有公共點”發(fā)生的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={-2,0,2},B={x|x2+x-2=0},則A∩B=(  )
A.B.{2}C.{0}D.{-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若f(x)是定義在R上的函數(shù),對任意的實數(shù)x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2且f(1)=4,則f(2017)的值為2020.

查看答案和解析>>

同步練習冊答案