17.隨機(jī) 抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖所示
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.

分析 (1)由題中莖葉圖可知:甲班身高集中于160~179cm之間,而乙班身高集中于170~180cm之間,由此能求出結(jié)果.
(2)設(shè)“身高為176cm的同學(xué)被抽中”的事件為A,用(x,y)表示從乙班10名同學(xué)中抽中兩名身高不低于173cm的同學(xué)的身高,由此利用列舉法能求出身高為176cm的同學(xué)被抽中的概率.

解答 解:(1)由題中莖葉圖可知:甲班身高集中于160~179cm之間,
而乙班身高集中于170~180cm之間,因此乙班平均身高高于甲班.
(2)設(shè)“身高為176cm的同學(xué)被抽中”的事件為A,
用(x,y)表示從乙班10名同學(xué)中抽中兩名身高不低于173cm的同學(xué)的身高,
則所有的基本事件有:
(181,173),(181,176),(181,178),(181,179),(179,173),
(179,176),(179,178),(178,173),(178,176),(176,173),共10個(gè)基本事件,
而事件A含有(181,176),(179,176),(178,176),(176,173),共4個(gè)基本事件,
故P(A)=$\frac{4}{10}=0.4$.

點(diǎn)評(píng) 本題考查莖葉圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=${log}_{2}|x|{+3}^{|x|}$,則f(x2-1)<3的解集為( 。
A.(-$\sqrt{2}$,-1)∪(-1,0)∪(0,1)∪(1,$\sqrt{2}$)B.(-$\sqrt{2}$,0)∪(0,$\sqrt{2}$)
C.(-$\sqrt{2}$,$\sqrt{2}$)D.(-$\sqrt{2}$,-1)∪(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知sin($\frac{π}{2}$+θ)<0,tan(π-θ)>0,則θ為第     象限角.(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.要得到函數(shù)$y=3sin(x+\frac{π}{2})$的圖象,只需將函數(shù)y=3sin(2x-$\frac{π}{6}$)的圖象上所有點(diǎn)的( 。
A.橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變),所得圖象再向左平移$\frac{2π}{3}$個(gè)單位長度.
B.橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變),所得圖象再向右平移$\frac{π}{6}$個(gè)單位長度.
C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象再向左平移$\frac{2π}{3}$個(gè)單位長度.
D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象再向右平移$\frac{π}{6}$個(gè)單位長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.復(fù)數(shù)$z=\frac{1+i}{1-i}+(1-i)$的虛部等于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似的看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖,其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,第六幅圖的蜂巢總數(shù)為91.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示某公司的組織結(jié)構(gòu)圖,信息部被( 。┲苯宇I(lǐng)導(dǎo)
A.專家辦公室B.開發(fā)部C.總工程師D.總經(jīng)理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在(0,2π)內(nèi)使sin x>|cos x|的x的取值范圍是( 。
A.($\frac{π}{4}$,$\frac{3π}{4}$)B.($\frac{π}{4}$,$\frac{π}{2}$]∪($\frac{5π}{4}$,$\frac{3π}{2}$]C.($\frac{π}{4}$,$\frac{π}{2}$)D.($\frac{5π}{4}$,$\frac{7π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知s$in2α=\frac{24}{25}$,且$π<α<\frac{5π}{4}$,則cosα-sinα=-$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案