3.已知$\overrightarrow{a}$=(cosα,1,sinα),$\overrightarrow$=(sinα,1,cosα),則向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角是( 。
A.90°B.60°C.30°D.

分析 根據(jù)向量的坐標(biāo)運(yùn)算與數(shù)量積運(yùn)算,計(jì)算($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=0,從而得出向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為90°.

解答 解:$\overrightarrow{a}$=(cosα,1,sinα),$\overrightarrow$=(sinα,1,cosα),
∴$\overrightarrow{a}$+$\overrightarrow$=(cosα+sinα,2,sinα+cosα),
$\overrightarrow{a}$-$\overrightarrow$=(cosα-sinα,0,sinα-cosα),
∴($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=(cosα+sinα)(cosα-sinα)+2×0+(sinα+cosα)(sinα-cosα)=0,
∴($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),
即向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為90°.
故選:A.

點(diǎn)評(píng) 本題考查了空間向量的坐標(biāo)運(yùn)算和數(shù)量積運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知對(duì)任意x∈R,不等式$\frac{1}{{2}^{{x}^{2}+2x}}$>($\frac{1}{2}$)${\;}^{2{x}^{2}+m+4}$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,$\frac{1}{4}$),則f(3)=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y∈R,滿足x2+2xy+4y2=6,則z=x+y的取值范圍為$[-\sqrt{6},\sqrt{6}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=-sinx+ax(a為常數(shù)).
(1)若x∈[0,$\frac{π}{2}$]時(shí)函數(shù)f(x)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)證明:當(dāng)x∈[0,$\frac{π}{2}$]時(shí),cosx≥-$\frac{1}{2}$x2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線l經(jīng)過點(diǎn)(0,-2),其傾斜角的大小是60°,則直線l與兩坐標(biāo)軸圍成三角形的面積S等于( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{3\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=(x2-1)2+2的極值點(diǎn)是(  )
A.x=1B.x=-1或0C.x=-1或1或0D.x=0或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,已知角α的終邊經(jīng)過點(diǎn)P(-3,4)
(1)求sinα和cosα的值;
(2)化簡(jiǎn)并求值:$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=sin2x,x∈R的最小正周期是( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

同步練習(xí)冊(cè)答案