5.設(shè)f(x)=(lnx)ln(1-x).
(1)求函數(shù)y=f(x)的圖象在($\frac{1}{2}$,f($\frac{1}{2}$))處的切線方程;
(2)求函數(shù)y=f′(x)的零點(diǎn).

分析 (1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f($\frac{1}{2}$),f′($\frac{1}{2}$),求出切線方程即可;
(2)令f′(x)=0,即(1-x)ln(1-x)-xlnx=0,令h(x)=(1-x)ln(1-x)-xlnx,(0<x<1),根據(jù)函數(shù)的單調(diào)性求出函數(shù)的零點(diǎn)即可.

解答 解:(1)f′(x)=$\frac{(1-x)ln(1-x)-xlnx}{x(1-x)}$,
故f($\frac{1}{2}$)=ln2$\frac{1}{2}$,f′($\frac{1}{2}$)=0,
故切線方程是:y=ln2$\frac{1}{2}$;
(2)由(1)得,令f′(x)=0,即(1-x)ln(1-x)-xlnx=0,
令h(x)=(1-x)ln(1-x)-xlnx,(0<x<1),
則h′(x)=lnx(1-x),h″(x)=$\frac{1-2x}{x(1-x)}$,
令h″(x)>0,解得:0<x<$\frac{1}{2}$,
令h″(x)<0,解得:x>$\frac{1}{2}$,
故h′(x)在(0,$\frac{1}{2}$)遞增,在($\frac{1}{2}$,+∞)遞減,
故h′(x)<h′($\frac{1}{2}$)=ln$\frac{1}{4}$<0,
故h(x)在(0,1)遞減,
而h($\frac{1}{2}$)=0,
故h(x)在(0,1)的零點(diǎn)是x=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了切線方程問(wèn)題,考查函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.“l(fā)og2(2x-3)<1”是“$x>\frac{3}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)a,b為實(shí)數(shù),函數(shù)y1=x2+ax+b,y2=x2+bx+a均有兩個(gè)不同的零點(diǎn),且y=y1y2只有三個(gè)不同零點(diǎn),則這三個(gè)不同零點(diǎn)之和為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在直角梯形ABCD中,∠A=90°,AD∥BC,BC=2AD,△ABD的面積為2,若$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{EC}$,BE⊥DC,則$\overrightarrow{DA}$$•\overrightarrow{DC}$的值為( 。
A.-2B.-2$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=mln(x+1),g(x)=$\frac{x}{x+1}$(x>-1).
(Ⅰ)討論函數(shù)F(x)=f(x)-g(x)在(-1,+∞)上的單調(diào)性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖<1>:在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E點(diǎn),把△DEC沿CE折到D′EC的位置,使D′A=2$\sqrt{3}$,如圖<2>:若G,H分別為D′B,D′E的中點(diǎn).
(1)求證:GH⊥平面AD′C;
(2)求平面D′AB與平面D′CE的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某淘寶商城專營(yíng)店經(jīng)銷某種產(chǎn)品,已知每個(gè)月的利潤(rùn)Y(單位:萬(wàn)元)是關(guān)于該月的交易量X(單位:件)的一次函數(shù),當(dāng)X=150時(shí),Y=4,且X每增加100,Y增加2.該店記錄了連續(xù)12個(gè)月的交易量X,整理得如表:
交易量X(件)150180200250320

頻率
$\frac{1}{12}$$\frac{1}{6}$
a
$\frac{1}{4}$$\frac{1}{6}$
(1)求a的值;      
(2)求這12個(gè)月的月利潤(rùn)(單位:萬(wàn)元)的平均數(shù);
(3)假定以這12個(gè)月記錄的各交易量的頻率作為各交易量發(fā)生的概率,求2017年3月份該產(chǎn)品利潤(rùn)不低于5萬(wàn)元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)是奇函數(shù),且滿足f(2-x)=f(x)(x∈R),當(dāng)0<x≤1時(shí),f(x)=lnx+2,則函數(shù)y=f(x)在(-2,4]上的零點(diǎn)個(gè)數(shù)是( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知公差不為零的等差數(shù)列{an}滿足a6=14,且a1,a3,a7為等比數(shù)列{bn}的前三項(xiàng).
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an-bn,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案