11.對于n個向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$,若存在n個不全為0的示數(shù)k1,k2,k3,…,kn,使得:k1$\overrightarrow{{a}_{1}}$+k2$\overrightarrow{{a}_{2}}$+k3$\overrightarrow{{a}_{3}}$+…+kn$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$成立;則稱向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$是線性相關(guān)的,按此規(guī)定,能使向量$\overrightarrow{{a}_{1}}$=(1,0),$\overrightarrow{{a}_{2}}$=(1,-1),$\overrightarrow{{a}_{3}}$=(2,2)線性相關(guān)的實數(shù)k1,k2,k3,則k1+4k3的值為( 。
A.-1B.0C.1D.2

分析 由線性相關(guān)的定義可得k1$\overrightarrow{{a}_{1}}$+k2$\overrightarrow{{a}_{2}}$+k3$\overrightarrow{{a}_{3}}$=$\overrightarrow{0}$,從而可得k1+k2+2k3=0,-k2+2k3=0,問題得以解決.

解答 解:由于向量$\overrightarrow{{a}_{1}}$=(1,0),$\overrightarrow{{a}_{2}}$=(1,-1),$\overrightarrow{{a}_{3}}$=(2,2)線性相關(guān),
所以k1$\overrightarrow{{a}_{1}}$+k2$\overrightarrow{{a}_{2}}$+k3$\overrightarrow{{a}_{3}}$=$\overrightarrow{0}$,
即k1(1,0)+k2(1,-1)+k3(2,2)=$\overrightarrow{0}$,
即(k1+k2+2k3,-k2+2k3)=$\overrightarrow{0}$,
所以k1+k2+2k3=0,-k2+2k3=0,
所以k1+4k3=0,
故選:B.

點評 本題考查平面向量的坐標(biāo)運算,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若復(fù)數(shù)z=$\frac{1+i}{1-i}$,$\overline{z}$為z的共軛復(fù)數(shù),則($\overline{z}$)2017=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知t∈R,復(fù)數(shù)z1=3+4i,z2=t+i,且z1•$\overline{{z}_{2}}$是實數(shù),則復(fù)數(shù)z2的模|z2|=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某單位決定建造一批簡易房(房型為長方體狀,房高2.5米),前后墻用2.5米高的彩色鋼板,兩側(cè)用2.5米高的復(fù)合鋼板,兩種鋼板的價格都用長度來計算(即:鋼板的高均為2.5米,用鋼板的長度乘以單價就是這塊鋼板的價格),每米單價:彩色鋼板為450元,復(fù)合鋼板為200元.房頂用其它材料建造,每平方米材料費為200元.每套房材料費控制在32000元以內(nèi).
(1)設(shè)房前面墻的長為x,兩側(cè)墻的長為y,所用材料費為p,試用x,y表示p;
(2)在材料費的控制下簡易房面積S的最大值是多少?并指出前面墻的長度x應(yīng)為多少米時S最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=4sinxsin(x+\frac{π}{3})$,在△ABC中,角A,B,C的對邊分別為a,b,c.
(1)當(dāng)$x∈[0,\frac{π}{2}]$時,求函數(shù)f(x)的取值范圍;
(2)若對任意的x∈R都有f(x)≤f(A),b=2,c=4,點D是邊BC的中點,求$|\overrightarrow{AD}|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知扇形的半徑為2,圓心角為2弧度,則該扇形的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果二次方程x2-px-q=0(其中p,q均是大于0的整數(shù))的正根小于3,那么這樣的二次方程有( 。
A.4個B.5個C.6個D.7個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x),x∈R滿足如下性質(zhì):①f(x)+f(-x)=0;②f($\frac{3}{4}$+x)=f($\frac{3}{4}$-x),若f(1)=-$\frac{\sqrt{5}}{5}$,f(2)=sinα(α∈(0,$\frac{π}{2}$)),則sin($\frac{π}{4}$+α)=(  )
A.0B.$\frac{\sqrt{10}}{10}$C.$\frac{2\sqrt{10}}{10}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在△ABC中,∠ABC=90°,AB=1,BC=$\sqrt{3}$,P為△ABC內(nèi)一點,∠APB=90°.
(1)若PA=$\frac{{\sqrt{3}}}{2}$,求PB;
(2)若∠BPC=120°,求tan∠PCB.

查看答案和解析>>

同步練習(xí)冊答案