10.函數(shù)$f(x)={2^x}+xln\frac{1}{4}$在區(qū)間[-2,2]上的最大值為(  )
A.$\frac{1}{4}+4ln2$B.4(1-ln2)C.2(1-ln2)D.4(2ln2-1)

分析 利用導(dǎo)數(shù)求出極值,然后求區(qū)間端點(diǎn)處的函數(shù)值,進(jìn)行大小比較即可.

解答 解:∵f(x)=2x+xln$\frac{1}{4}$,
∴f′(x)=2xln2-ln4=ln2(2x-2),
令f′(x)=0,
解得x=1,
∴f(x)在[-2,1]上單調(diào)遞減,在[1,2]上單調(diào)遞增,
∵f(2)=4-2ln4=4-4ln2,f(-2)=$\frac{1}{4}$+2ln4=$\frac{1}{4}$+4ln2,
∴f(-2)-f(2)=$\frac{1}{4}$+4ln2-4+4ln2=$\frac{1}{4}$+4ln4-4=$\frac{1}{4}$+4(ln4-1)>0,
∴∴f(x)max=f(-2)=$\frac{1}{4}$+4ln2,
故選:A

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值問題,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=xlnx,其中x∈(0,e](e是自然常數(shù)).
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性并求出其極小值;
(Ⅱ)若存在x0∈(0,e],使f(x0)≤a,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)數(shù)z在眏射f下的象為(2+i)z,則1-2i的原象為(  )
A.-iB.iC.4-3iD.4+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=4cosωxsin(ωx-$\frac{π}{6}$)(ω>0)的最小正周期是π.
(1)求函數(shù)f(x)在區(qū)間x∈(0,π)的單調(diào)遞增區(qū)間;
(2)求f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)正實(shí)數(shù)x,y滿足x+2y=xy,若m2+2m<x+2y恒成立,則實(shí)數(shù)m的取值范圍是(-4,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)向量$\overrightarrow a=(-1,3)$,$\overrightarrow b=(2,x)$,若$\overrightarrow a⊥\overrightarrow b$,則x=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$sin(α-\frac{3π}{2})<0,tanα<0$,則角α是第二象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.曲線y=2x-ex在x=0處的切線的傾斜角為(  )
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x,y∈R+且x+y=4,則使不等式$\frac{1}{x}+\frac{4}{y}$≥m恒成立的實(shí)數(shù)m的取值范圍為(  )
A.(2,+∞)B.(-∞,$\frac{7}{4}$]C.(3,+∞)D.(-∞,$\frac{9}{4}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案