18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x(-2≤x<0)}\\{{x}^{\frac{1}{2}}(0≤x≤9)}\end{array}\right.$,若方程f(x)-a=0有兩個(gè)解,則a的取值范圍是(-$\frac{1}{4}$,2].

分析 畫出f(x)的圖象,由二次函數(shù)及冪函數(shù)的性質(zhì)求得f(x)的取值范圍,即可求得a的取值范圍.

解答 解:由-2≤x<0,f(x)=x2+x,對(duì)稱軸x=-$\frac{1}{2}$,
則-2≤x<-$\frac{1}{2}$時(shí),f(x)單調(diào)遞減,-$\frac{1}{2}$<x<0,f(x)單調(diào)遞增,
當(dāng)x=-2時(shí),取最大值,最大值為2,當(dāng)x=-$\frac{1}{2}$時(shí)取最小值,最小值為-$\frac{1}{4}$,
當(dāng)0≤x≤9時(shí),f(x)=${x}^{\frac{1}{2}}$,f(x)在[0,9]上單調(diào)遞增,
若方程f(x)-a=0有兩個(gè)解,則f(x)=a與f(x)有兩個(gè)交點(diǎn),
則a的取值范圍(-$\frac{1}{4}$,2],
∴a的取值范圍(-$\frac{1}{4}$,2],
故答案為:(-$\frac{1}{4}$,2].

點(diǎn)評(píng) 本題考查二次函數(shù)的及冪函數(shù)圖象與性質(zhì),考查分段函數(shù)的單調(diào)性,考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|y=lgx},B={x|x-1≤0},則A∩B=(  )
A.(0,1]B.(0,1)C.(-1,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將周期為π的函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$),(ω>0)的圖象向右平移φ個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,則φ的最小正值是( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知三棱錐S-ABC的三條側(cè)棱相等,體積為$\frac{\sqrt{3}}{4}$,AB=BC=$\sqrt{3}$,∠ACB=30°,則三棱錐S-ABC外接球的體積為$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在正方體ABCD-A1B1C1D1中,E、F分別是BC、A1D1的中點(diǎn).
(1)求證:四邊形B1EDF是菱形;
(2)求異面直線A1C與DE所成的角 (結(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l與曲線y=ex相切于點(diǎn)A(0,1),直線l的方程是x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足:a1=3,an+1=a${\;}_{n}^{2}$-nan+1.
(Ⅰ)求a2,a3的值;
(Ⅱ)猜測an與n+2的大小關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知D,E是△ABC邊BC的三等分點(diǎn),點(diǎn)P在線段DE上,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則xy的取值范圍是(  )
A.[$\frac{1}{9}$,$\frac{4}{9}$]B.[$\frac{1}{9}$,$\frac{1}{4}$]C.[$\frac{2}{9}$,$\frac{1}{2}$]D.[$\frac{2}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.下表是某校高三一次月考5個(gè)班級(jí)的數(shù)學(xué)、物理的平均成績:
班級(jí)12345
數(shù)學(xué)(x分)111113119125127
物理(y分)92939699100
(Ⅰ)一般來說,學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),求兩個(gè)變量x,y的線性回歸方程$\hat y=\hat bx+\hat a$;
(Ⅱ)從以上5個(gè)班級(jí)中任選兩個(gè)參加某項(xiàng)活動(dòng),求至少有一個(gè)班級(jí)數(shù)學(xué)平均分在115分以上的概率.
附:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

同步練習(xí)冊答案