A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,得出結(jié)論.
解答 解:∵函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)的周期為π,∴$\frac{2π}{ω}$=π,∴ω=2.
把f(x)=2sin(2x+$\frac{π}{3}$)的圖象向右平移φ個單位,可得y=2sin(2x-2φ+$\frac{π}{3}$)的圖象.
根據(jù)所得圖象關(guān)于y軸對稱,可得-2φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,則φ的最小正值為$\frac{5π}{12}$,
故選:A.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{8}{9}\overrightarrow{AC}$ | B. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{8}{9}\overrightarrow{AC}$ | C. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{7}{9}\overrightarrow{AC}$ | D. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{7}{9}\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com