9.將周期為π的函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$),(ω>0)的圖象向右平移φ個單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,得出結(jié)論.

解答 解:∵函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)的周期為π,∴$\frac{2π}{ω}$=π,∴ω=2.
把f(x)=2sin(2x+$\frac{π}{3}$)的圖象向右平移φ個單位,可得y=2sin(2x-2φ+$\frac{π}{3}$)的圖象.
根據(jù)所得圖象關(guān)于y軸對稱,可得-2φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,則φ的最小正值為$\frac{5π}{12}$,
故選:A.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,在△ABC中,點D在BC邊上,且CD=2DB,點E在AD邊上,且AD=3AE,則用向量$\overrightarrow{AB},\overrightarrow{AC}$表示$\overrightarrow{CE}$為( 。
A.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{8}{9}\overrightarrow{AC}$B.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{8}{9}\overrightarrow{AC}$C.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{7}{9}\overrightarrow{AC}$D.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{7}{9}\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{13}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,已知$\frac{a}=\frac{cosB}{cosA}$,a=4,c=5.
(1)求邊b的長;
(2)若$\frac{a}>1$,點E,F(xiàn)分別在線段AB,AC上,當(dāng)${S_{△AEF}}=\frac{1}{2}{S_{△ABC}}$時,求△AEF周長l的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).
(1)寫出a2、a3的值(只寫出結(jié)果),并求出數(shù)列{an}的通項公式;
(2)設(shè)${b_n}=\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_{n+2}}}}+$$\frac{1}{{{a_{n+3}}}}+…+\frac{1}{{{a_{2n}}}}$,若對任意的正整數(shù)n,不等式${t^2}-2t+\frac{1}{6}>{b_n}$恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}$+y2=1(a>b>0)的左右焦點F1,F(xiàn)2,P分別為是C上異于長軸端點的動點,∠F1PF2的平分線交x軸于點M,當(dāng)P在軸上的射影為F2時,M恰為OF2中點.
(1)求C的方程;
(2)過點F2引PF2的垂線交直線l:x=2于點Q,試判斷直線PQ與C是否有其它公共點?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex-2x.
(1)求函數(shù)f(x)的極值;
(2)當(dāng)a<2-ln4且x>0時,試比較f(x)與x2+(a-2)x+1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x(-2≤x<0)}\\{{x}^{\frac{1}{2}}(0≤x≤9)}\end{array}\right.$,若方程f(x)-a=0有兩個解,則a的取值范圍是(-$\frac{1}{4}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線與圓${({x-2\sqrt{2}})^2}+{y^2}=\frac{8}{3}$相切,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

同步練習(xí)冊答案