19.在直徑AB=4的圓上有長度為2的動弦CD,則$\overrightarrow{AC}•\overrightarrow{BD}$的最大值為2.

分析 建立適當?shù)钠矫嬷苯亲鴺讼担O角度為參數(shù),利用坐標表示與參數(shù)方程建立$\overrightarrow{AC}$•$\overrightarrow{BD}$的解析式,利用三角函數(shù)求出它的最值.

解答 解:建立如圖所示平面直角坐標系,
設∠BOC=x,則∠BOD=x+$\frac{π}{3}$;
∴C(2cosx,2sinx),D(2cos(x+$\frac{π}{3}$),2sin(x+$\frac{π}{3}$)),
且A(-2,0),B(2,0);
∴$\overrightarrow{AC}$=(2cosx+2,2sinx),
$\overrightarrow{BD}$=(2cos(x+$\frac{π}{3}$)-2,2sin(x+$\frac{π}{3}$));
∴$\overrightarrow{AC}$•$\overrightarrow{BD}$=(2cosx+2)×(2cos(x+$\frac{π}{3}$)-2)
+2sinx×2sin(x+$\frac{π}{3}$)
=4cosxcos(x+$\frac{π}{3}$)-4cosx+4cos(x+$\frac{π}{3}$)
-4+4sinxsin(x+$\frac{π}{3}$)
=4cos$\frac{π}{3}$-4cosx+4cos(x+$\frac{π}{3}$)-4
=-4cos(x-$\frac{π}{3}$)-2;
當cos(x-$\frac{π}{3}$)=-1時,$\overrightarrow{AC}$•$\overrightarrow{BD}$取得最大值2.
故答案為:2.

點評 本題考查了平面向量的數(shù)量積應用問題,解題時應建立適當?shù)淖鴺讼担萌呛瘮?shù)的定義與數(shù)量積的坐標運算,結(jié)合三角恒等變換求函數(shù)的最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.設集合A={x|y=lg(x-3)},B={y|y=2x,x∈R},則A∪B等于( 。
A.B.RC.{x|x>1}D.{x|x>0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在△ABC中,AB=7,BC=5,CA=6,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=-19.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.△ABC中,A=45°,B=30°,a=10,則b=( 。
A.5$\sqrt{2}$B.10$\sqrt{2}$C.10$\sqrt{6}$D.5$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)y=f(x+1)的圖象關于直線x=-1對稱,且滿足f(x)+f′(x)=2ex,若a=f(-3),b=f(lnπ),c=f(|sinx|),則a,b,c的大小關系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)是定義域在R上的奇函數(shù),當x>0時,f(x)=x2-2x-3
(1)求出函數(shù)f(x)在R上的解析式;
(2)畫出函數(shù)f(x)的圖象并寫出單調(diào)區(qū)間;
(3)證明:函數(shù)f(x)在[1,+∞)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知F1,F(xiàn)2分別是橢圓$\frac{x^2}{4}+{y^2}=1$的兩焦點,點P是該橢圓上一動點,則$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范圍為[-2,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知θ為銳角,且cos(θ+$\frac{π}{12}$)=$\frac{\sqrt{3}}{3}$,則cos($\frac{5π}{12}$-θ)=(  )
A.$\frac{\sqrt{6}+\sqrt{2}}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{6}}{3}$D.-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設x,y滿足約束條件$\left\{\begin{array}{l}{x+1≥0}\\{x+y≤1}\\{x-y≤1}\end{array}\right.$,則目標函數(shù)z=$\frac{y-3}{x}$的取值范圍是(-∞,-3]∪[1,+∞).

查看答案和解析>>

同步練習冊答案