12.將函數(shù)$y=cos(2x+\frac{π}{6})$圖象上的點(diǎn)$P(\frac{π}{4},t)$向右平移m(m>0)個單位長度得到點(diǎn)P',若P'位于函數(shù)y=cos2x的圖象上,則( 。
A.$t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{6}$B.$t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{12}$
C.$t=-\frac{1}{2}$,m的最小值為$\frac{π}{6}$D.$t=-\frac{1}{2}$,m的最小值為$\frac{π}{12}$

分析 由題意利用y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,可得t=cos(2•$\frac{π}{4}$+$\frac{π}{6}$)=cos$\frac{2π}{3}$=-$\frac{1}{2}$,且t=cos2($\frac{π}{4}$+m)=-sin2m,求得sin2m=$\frac{1}{2}$,可得m的最小值.

解答 解:將函數(shù)$y=cos(2x+\frac{π}{6})$圖象上的點(diǎn)$P(\frac{π}{4},t)$向右平移m(m>0)個單位長度得到點(diǎn)P',
若點(diǎn)P'位于函數(shù)y=cos2x的圖象上,
∴t=cos(2•$\frac{π}{4}$+$\frac{π}{6}$)=cos$\frac{2π}{3}$=-$\frac{1}{2}$,且t=cos2($\frac{π}{4}$+m)=-sin2m,
∴sin2m=$\frac{1}{2}$,∴2m的最小值為$\frac{π}{6}$,m的最小值為$\frac{π}{12}$,
故選:D.

點(diǎn)評 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\frac{{2cos{{10}°}-sin{{20}°}}}{{cos{{20}°}}}$=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y≤0}\\{x≥0}\end{array}\right.$,則2x-y的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|ax-1|(a∈R),不等式f(x)≤2的解集是{x|-$\frac{1}{2}$≤x≤$\frac{3}{2}$}.
(1)求a的值;
(2)解不等式f(x)+f($\frac{x}{2}$-1)≥5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知角α的終邊過點(diǎn)(-2,3),則sin2α=$-\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知O為坐標(biāo)原點(diǎn),F(xiàn)是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn),A,B分別為雙曲線C的左、右頂點(diǎn),P為雙曲線C上的一點(diǎn),且PF⊥x軸,過點(diǎn)A的直線l與線段PF交于M,與y軸交于點(diǎn)E,直線BM與y軸交于點(diǎn)N,若|OE|=3|ON|,則雙曲線C的離心率為( 。
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)θ為鈍角,若sin(θ+$\frac{π}{3}$)=-$\frac{3}{5}$,則cosθ的值為$\frac{-4-3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在R上的函數(shù)f(x),滿足(x-1)f′(x)≤0,且y=f(x+1)為偶函數(shù),當(dāng)|x1-1|<|x2-1|時,有( 。
A.f(x1)≥f(x2B.f(x1)=f(x2C.f(x1)>f(x2D.f(x1)≤f(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC的頂點(diǎn)C(x0,y0)的坐標(biāo)滿足不等式x2+y2≤8+2y,y≥3,邊AB在x軸上,已知點(diǎn)Q(0,1)與直線AC及BC的距離均為1,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案