3.方程x2+y2+4kx-2y+5k=0表示圓,則k的取值范圍是(  )
A.k>1B.k>1或k<$\frac{1}{4}$C.k<$\frac{1}{4}$D.以上答案 都不對(duì)

分析 利用二次方程表示圓的充要條件的判定,求出k的范圍.

解答 解:方程x2+y2+4kx-2y+5k=0表示圓,即(x+2k)2+(y-1)2=1-5k+4k2表示圓,
所以1-5k+4k2>0,所以k>1或k<$\frac{1}{4}$.
故選B.

點(diǎn)評(píng) 本題考查圓的一般方程的求法,二次方程表示圓的充要條件,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn).設(shè)h(x)=f(f(x))-c,其中c∈(-2,2),函數(shù)y=h(x)的零點(diǎn)個(gè)數(shù)( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知底面為矩形的四棱錐D-ABCE,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,且二面角D-AE-C的正切值為-2.
(1)求證:平面ADE⊥平面CDE;
(2)求點(diǎn)D到平面ABCE的距離;
(3)求二面角A一BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系.已知曲線C:ρsin2θ=2acosθ(a>0),過點(diǎn)P(-2,-4)且傾斜角為$\frac{π}{4}$的直線l與曲線C分別交于M,N兩點(diǎn).
(1)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知n∈N*,給出4個(gè)表達(dá)式:①an=$\left\{\begin{array}{l}{0,n為奇數(shù)}\\{1,n為偶數(shù)}\end{array}\right.$,②an=$\frac{1+(-1)^{n}}{2}$,③an=$\frac{1+cosnπ}{2}$,④an=|sin$\frac{nπ}{2}$|,其中能作為數(shù)列:0,1,0,1,0,1,0,1,…的通項(xiàng)公式的是( 。
A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=-log3(9x)•log3$\frac{x}{3}$($\frac{1}{9}$≤x≤27).
(1)設(shè)t=log3x,求t的取值范圍
(2)求f(x)的最小值,并指出f(x)取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題

,則( )

A. B.

C.4 D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.學(xué)校體育隊(duì)共有5人,其中會(huì)打排球的有2人,會(huì)打乒乓球的有5人,現(xiàn)從中選2人.設(shè)ξ為選出的人中既會(huì)打排球又會(huì)打乒乓球的人數(shù),則隨機(jī)變量ξ的均值E(ξ)=( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=cos($\frac{π}{2}$+x)+sin2($\frac{π}{2}$+x),x∈R,則f(x)的最大值為(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案