14.在四棱錐P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的動(dòng)點(diǎn).若CE∥平面PAB,則三棱錐C-ABE的體積為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

分析 以A為原點(diǎn),AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出三棱錐C-ABE的體積.

解答 解:以A為原點(diǎn),AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,
A(0,0,0),B(0,2,0),C(2,2,0),D(6,0,0),P(0,0,3),
設(shè)E(a,0,c),$\overrightarrow{AE}=λ\overrightarrow{AD}$,則(a,0,c-3)=(6λ,0,-3λ),
解得a=6λ,c=3-3λ,∴E(6λ,0,3-3λ),
$\overrightarrow{CE}$=(6λ-2,-2,3-3λ),
平面ABP的法向量$\overrightarrow{n}$=(1,0,0),
∵CE∥平面PAB,∴$\overrightarrow{CE}•\overrightarrow{n}$=6λ-2=0,
解得$λ=\frac{1}{3}$,∴E(2,0,2),
∴E到平面ABC的距離d=2,
∴三棱錐C-ABE的體積:
VC-ABE=VE-ABC=$\frac{1}{3}×{S}_{△ABC}×d$=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a>π>b>1>c>0,且x=a${\;}^{\frac{1}{π}}}$,y=logπb,z=logcπ,則( 。
A.x>y>zB.x>z>yC.y>x>zD.y>z>x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.對(duì)于三次函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,則$f(0)+f(\frac{1}{2017})+f(\frac{2}{2017})+$…$+f(\frac{2015}{2017})+f(\frac{2016}{2017})+f(1)$=2018.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,既是偶函數(shù)又存在零點(diǎn)的是( 。
A.y=cos xB.y=sin xC.y=ln xD.y=x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在平面直角坐標(biāo)系xOy中,點(diǎn)M(0,1),N(0,4).在直線x+y-m=0上存在點(diǎn)Q,使得QN=2QM,則實(shí)數(shù)m的取值范圍是-2$\sqrt{2}$≤m≤2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC的內(nèi)角A,B,C所對(duì)的邊為a,b,c,已知$a=\sqrt{3}+1,b=\sqrt{3}-1$,C=120°,則c=(  )
A.$\sqrt{10}$B.$\sqrt{6}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)是定義在(0,+∞)上的非負(fù)可導(dǎo)函數(shù),且滿足xf'(x)-f(x)≤0,對(duì)任意正數(shù)a,b,若a<b,則必有( 。
A.bf(a)<af(b)B.bf(a)>af(b)C.bf(a)≤af(b)D.af(b)≤bf(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.定義在(0,+∞)的函數(shù)f(x)滿足9f(x)<xf'(x)<10f(x)且f(x)>0,則$\frac{f(2)}{f(1)}$的取值范圍是(29,210).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知雙曲線x2-y2=1,則它的右焦點(diǎn)到它的漸近線的距離是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案