19.已知函數(shù)f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x,a∈R..
(Ⅰ)若函數(shù)f(x)在區(qū)間(1,3)上單調(diào)遞減,求a的取值范圍;
(Ⅱ)當(dāng)a=-1時,證明f(x)≥$\frac{1}{2}$.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.

解答 解:(I)函數(shù)的定義域為(0,+∞).
因為$f'(x)=\frac{a}{x}+x-(a+1)=\frac{{{x^2}-(a+1)x+a}}{x}=\frac{(x-1)(x-a)}{x}$.
又因為函數(shù)f(x)在(1,3)單調(diào)減,所以不等式(x-1)(x-a)≤0在(1,3)上成立.
設(shè)g(x)=(x-1)(x-a),則g(3)≤0,即9-3(a+1)+a≤0即可,解得a≥3.
所以a的取值范圍是[3,+∞).…(7分)
(Ⅱ)當(dāng)a=-1時,f(x)=-lnx+$\frac{{x}^{2}}{2}$,
f′(x)=$\frac{(x+1)(x-1)}{x}$,
令f'(x)=0,得x=1或x=-1(舍).
當(dāng)x變化時,f(x),f'(x)變化情況如下表:

x(0,1)1(1,+∞)
f'(x)-0+
f(x)極小值
所以x=1時,函數(shù)f(x)的最小值為f(1)=$\frac{1}{2}$,
所以$f(x)≥\frac{1}{2}$成立.…(13分)

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐S-ABCD中,底面ABCD為矩形,SD⊥底面ABCD,AD=$\sqrt{2}$,DC=SD=2,點M是側(cè)棱SC的中點.
(Ⅰ)求異面直線BM與CD所成角的大;
(Ⅱ)求二面角S-AM-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.過三點A(1,3),B(4,2),C(1,-7)的圓M交于y軸于P、Q兩點.
(1)求線段PQ的長;
(2)動圓N的圓心N在直線2x-y+6=0上運動,半徑為10,若圓N與圓M有公共點,求點N橫坐標a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為120°,若向量$\overrightarrow{c}=\overrightarrow{a}+\overrightarrow$,且$\overrightarrow{a}⊥\overrightarrow{c}$,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$的值為( 。
A.$\frac{1}{2}$B.$\frac{2\sqrt{3}}{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若f(x)=$\frac{1}{2}$ax2+2x-lnx(a≠0)在區(qū)間[1,2]上是增函數(shù),則實數(shù)a的最小值為(  )
A.1B.-1C.-$\frac{3}{4}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,斜三棱柱ABC-A1B1C1的所有棱長均為a,M是BC的中點,側(cè)面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求證:BC⊥C1M;
(Ⅱ)求二面角A1-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f'(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時,xf′(x)-f(x)<0,$g(x)=\frac{f(x)}{x}(x≠0)$
(Ⅰ)判斷函數(shù)g(x)的奇偶性;
(Ⅱ)證明函數(shù)g(x)在(0,+∞)上為減函數(shù);
(Ⅲ)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)f(x)=ax2-bx+6lnx+15,其中a∈R,曲線y=f(x)在x=1和x=6處的切線都與直線$y=-\frac{1}{2}x+3$垂直.
(1)確定a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等比數(shù)列{an}滿足:a1=$\frac{1}{2}$,a1,a2,a3-$\frac{1}{8}$成等差數(shù)列,公比q∈(0,1)
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2nan,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案