已知函數(shù),當時,取得極大值;當時,取得極小值.
求、、的值;
求在處的切線方程.
科目:高中數(shù)學 來源: 題型:解答題
如下圖,過曲線:上一點作曲線的切線交軸于點,又過作 軸的垂線交曲線于點,然后再過作曲線的切線交軸于點,又過作軸的垂線交曲線于點,,以此類推,過點的切線 與軸相交于點,再過點作軸的垂線交曲線于點(N).
(1) 求、及數(shù)列的通項公式;(2) 設(shè)曲線與切線及直線所圍成的圖形面積為,求的表達式; (3) 在滿足(2)的條件下, 若數(shù)列的前項和為,求證:N.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(I)若a=-1,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(2,f(2))處的切線的傾斜角為45o,對于任意的t [1,2],函數(shù)是的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知
(Ⅰ)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(Ⅱ)對一切的,恒成立,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若在處的切線與直線垂直,求證:對任意,都有;
(3)若,對于任意,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù) 且.
(Ⅰ)當時,求在點處的切線方程;
(Ⅱ)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,其中是自然常數(shù),
(1)討論時, 的單調(diào)性、極值;
(2)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com