分析 (1)由BF⊥平面ACE得出BF⊥AE,由面面垂直的性質(zhì)得出BC⊥AE,于是得出AE⊥平面BCE;
(2)連結(jié)BD交AC于G,連結(jié)FG,證明AC⊥平面BFG,得出∠BGF為所求二面角,故而cos∠BGF=$\frac{FG}{BG}$.
解答 (1)證明:∵BF⊥平面ACE,AE?平面ACE.
∴BF⊥AE.
∵二面角D-AB-E為直二面角,
且平面ABCD∩平面ACE=AB,BC?平面ABCD,CB⊥AB,
∴CB⊥平面ABE,又∵AE?平面ACE.
∴CB⊥AE,
又∵BF∩CB=B,BF?平面BCE,CB?平面BCE,
∴AE⊥平面BCE.
(2)解:連結(jié)BD交AC于G,連結(jié)FG.
∵BF⊥平面ACE,∴BF⊥AC,
又∵正方形ABCD中,AC⊥BG,且BF∩BG=B,
∴AC⊥面BFG,∴AC⊥GF,∴∠BGF即為二面角B-AC-E的平面角,
∵AE⊥面BCE,∴AE⊥EB,∴$AE=EB=\sqrt{2}$,
在Rt△BCE中,可求$CE=\sqrt{6}$∴$BF=\frac{BE•BC}{CE}=\frac{{2\sqrt{3}}}{3}$,
∴在Rt△BFG中,F(xiàn)G=$\sqrt{B{G^2}-B{F^2}}=\sqrt{{{(\sqrt{2})}^2}-{{(\frac{{2\sqrt{3}}}{3})}^2}}=\frac{{\sqrt{6}}}{3}$
∴$cos∠BGF=\frac{FG}{BG}=\frac{{\frac{{\sqrt{6}}}{3}}}{{\sqrt{2}}}=\frac{{\sqrt{3}}}{3}$,即二面角B-AC-E的余弦值為$\frac{{\sqrt{3}}}{3}$.
點評 本題考查了線面垂直的判定,空間角的計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a+b=0 | B. | x1+x3>2x2 | C. | x1+x3=5 | D. | x12+x22+x32=14 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\frac{1+\sqrt{13}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com