【題目】電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:
連續(xù)劇 | 連續(xù)劇播放時長/min | 廣告播放時長/min | 收視人次/萬人 |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
電視臺每周安排的甲、乙連續(xù)劇的總播放時長不多于,廣告的總播放時長不少于,且甲連續(xù)劇播放的次數不多于乙連續(xù)劇播放次數的2倍,分別用,表示每周計劃播出的甲、乙兩套連續(xù)劇的次數,要使總收視人次最多,則電視臺每周播出甲、乙兩套連續(xù)劇的次數分別為( )
A.6,3B.5,2C.4,5D.2,7
科目:高中數學 來源: 題型:
【題目】在直角坐標系x-O-y中,已知曲線E:(t為參數)
(1)在極坐標系O-x中,若A、B、C為E上按逆時針排列的三個點,△ABC為正三角形,其中A點的極角θ=,求B、C兩點的極坐標;
(2)在直角坐標系x-O-y中,已知動點P,Q都在曲線E上,對應參數分別為t=α與t=2α (0<α<2π),M為PQ的中點,求 |MO| 的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數滿足:對于其定義域內的任何一個自變量,都有函數值,則稱函數在上封閉.
(1)若下列函數:,的定義域為,試判斷其中哪些在上封閉,并說明理由.
(2)若函數的定義域為,是否存在實數,使得在其定義域上封閉?若存在,求出所有的值,并給出證明;若不存在,請說明理由.
(3)已知函數在其定義域上封閉,且單調遞增,若且,求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐S﹣ABCD中,四邊形ABCD為平行四邊形,BA⊥AC,SA⊥AD,SC⊥CD.
(Ⅰ)求證:AC⊥SB;
(Ⅱ)若AB=AC=SA=3,E為線段BC的中點,F為線段SB上靠近B的三等分點,求直線SC與平面AEF所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種熱飲需用開水沖泡,其基本操作流程如下:①先將水加熱到100,水溫與時間近似滿足一次函數關系;②用開水將熱飲沖泡后在室溫下放置,溫度與時間近似滿足函數的關系式為 (為常數), 通常這種熱飲在40時,口感最佳,某天室溫為時,沖泡熱飲的部分數據如圖所示,那么按上述流程沖泡一杯熱飲,并在口感最佳時飲用,最少需要的時間為
A. 35 B. 30
C. 25 D. 20
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓C:+=1(a>b>0)的離心率為,橢圓上動點P到一個焦點的距離的最小值為3(-1).
(1) 求橢圓C的標準方程;
(2) 已知過點M(0,-1)的動直線l與橢圓C交于A,B兩點,試判斷以線段AB為直徑的圓是否恒過定點,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】漁民出海打魚,為了保證獲得的魚新鮮,魚被打上岸后,要在最短的時間內將其分揀、冷藏,若不及時處理,打上來的魚很快地失去新鮮度(以魚肉內的三甲胺量的多少來確定魚的新鮮度.三甲胺是一種揮發(fā)性堿性氨,是氨的衍生物,它是由細菌分解產生的.三甲胺量積聚就表明魚的新鮮度下降,魚體開始變質進而腐敗).已知某種魚失去的新鮮度與其出海后時間(分)滿足的函數關系式為.若出海后10分鐘,這種魚失去的新鮮度為10%,出海后20分鐘,這種魚失去的新鮮度為20%,那么若不及時處理,打上來的這種魚在多長時間后開始失去全部新鮮度(已知,結果取整數)( )
A.33分鐘B.40分鐘C.43分鐘D.50分鐘
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com