【題目】設(shè)函數(shù), 函數(shù) .
(1)求函數(shù)的單調(diào)區(qū)間和最小值;
(2)討論 與 的大小關(guān)系;
(3)求的取值范圍,使得 對任意的都成立.
【答案】(1)減區(qū)間是,增區(qū)間是,;(2);(3).
【解析】分析:(1)由f(1)=0,且f′(x)=可得f(x)=lnx,從而化簡g(x)=f(x)+f′(x)=lnx+,從而求導(dǎo)確定函數(shù)的單調(diào)性及最小值;
(2)通過函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性,半比較兩個函數(shù)的大小關(guān)系即可.
(3)利用(1)的結(jié)論,轉(zhuǎn)化不等式,求解即可.
詳解:(Ⅰ)由題設(shè)知f(x)=lnx,g(x)=lnx+,
∴g'(x)=,令g′(x)=0得x=1,
當(dāng)x∈(0,1)時(shí),g′(x)<0,故(0,1)是g(x)的單調(diào)減區(qū)間.
當(dāng)x∈(1,+∞)時(shí),g′(x)>0,故(1,+∞)是g(x)的單調(diào)遞增區(qū)間,
因此,x=1是g(x)的唯一值點(diǎn),且為極小值點(diǎn),
從而是最小值點(diǎn),所以最小值為g(1)=1.
(II)
設(shè),則h'(x)=﹣,
當(dāng)x=1時(shí),h(1)=0,即,
當(dāng)x∈(0,1)∪(1,+∞)時(shí),h′(1)<0,
因此,h(x)在(0,+∞)內(nèi)單調(diào)遞減,
當(dāng)0<x<1時(shí),h(x)>h(1)=0,即,
當(dāng)x>1時(shí),h(x)<h(1)=0,即.
(III)由(I)知g(x)的最小值為1,
所以,g(a)﹣g(x)<,對任意x>0,成立g(a)﹣1<,
即Ina<1,從而得0<a<e.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(且)是奇函數(shù).
(1)求常數(shù)的值;
(2)若,試判斷函數(shù)的單調(diào)性,并加以證明;
(3)若,且函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}和{bn}滿足a1a2a3…an= (n∈N*).若{an}為等比數(shù)列,且a1=2,b3=6+b2 .
(1)求an和bn;
(2)設(shè)cn= (n∈N*).記數(shù)列{cn}的前n項(xiàng)和為Sn .
(i)求Sn;
(ii)求正整數(shù)k,使得對任意n∈N*均有Sk≥Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)為了解在校本科生對參加某項(xiàng)社會實(shí)踐活動的意向,擬采用分層抽樣的方向,從該校四個年級的本科生中抽取一個容量為300的樣本進(jìn)行調(diào)查,已知該校一年級、二年級、三年級、四年級的本科生人數(shù)之比為4:5:5:6,則應(yīng)從一年級本科生中抽取名學(xué)生.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在D上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界已知函數(shù)
當(dāng),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且定義域?yàn)?/span>.
(1)求關(guān)于的方程在上的解;
(2)若在區(qū)間上單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有兩個不同的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).現(xiàn)有下列命題:
①f(﹣x)=﹣f(x);
②f( )=2f(x)
③|f(x)|≥2|x|
其中的所有正確命題的序號是( )
A.①②③
B.②③
C.①③
D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的公差為d,點(diǎn)(an , bn)在函數(shù)f(x)=2x的圖象上(n∈N*).
(1)若a1=﹣2,點(diǎn)(a8 , 4b7)在函數(shù)f(x)的圖象上,求數(shù)列{an}的前n項(xiàng)和Sn;
(2)若a1=1,函數(shù)f(x)的圖象在點(diǎn)(a2 , b2)處的切線在x軸上的截距為2﹣ ,求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小組共10人,利用假期參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4,. 現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會.
(1)設(shè)A為事件“選出的2人參加義工活動次數(shù)之和為4”,求事件A發(fā)生的概率;
(2)設(shè) 為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機(jī)變量 的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com