19.若復(fù)數(shù)z滿(mǎn)足(1+i)z=i(i是虛數(shù)單位),則z的虛部為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$iD.-$\frac{1}{2}i$

分析 由(1+i)z=i,得$z=\frac{i}{1+i}$,再利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,則答案可求.

解答 解:由(1+i)z=i,
得$z=\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}=\frac{1+i}{2}=\frac{1}{2}+\frac{1}{2}i$,
則z的虛部為:$\frac{1}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在{1,3,5}和{2,4}兩個(gè)集合中各取一個(gè)數(shù)組成一個(gè)兩位數(shù),則這個(gè)數(shù)能被4整除的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,點(diǎn)M和N分別是B1C1和BC的中點(diǎn).
(1)求證:MB∥平面AC1N;
(2)求證:AC⊥MB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知圓C:x2+y2-2x+4y=0,則圓C的半徑為$\sqrt{5}$,過(guò)點(diǎn)(2,1)的直線(xiàn)中,被圓C截得弦長(zhǎng)最長(zhǎng)的直線(xiàn)方程為3x-y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)等差數(shù)列{an}的公差是d,前n項(xiàng)和是Sn,若a1=1,a5=9,則公差d=2,Sn=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)F1,F(xiàn)2分別為雙曲線(xiàn)C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$的兩個(gè)焦點(diǎn),M,N是雙曲線(xiàn)C的一條漸近線(xiàn)上的兩點(diǎn),四邊形MF1NF2為矩形,A為雙曲線(xiàn)的一個(gè)頂點(diǎn),若△AMN的面積為$\frac{1}{2}{c}^{2}$,則該雙曲線(xiàn)的離心率為( 。
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知曲線(xiàn)C的參數(shù)方程是$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù))
(1)將C的參數(shù)方程化為普通方程;
(2)在直角坐標(biāo)系xOy中,P(0,2),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρcosθ+$\sqrt{3}$ρsinθ+2$\sqrt{3}$=0,Q為C上的動(dòng)點(diǎn),求線(xiàn)段PQ的中點(diǎn)M到直線(xiàn)l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),直線(xiàn)l為圓O:x2+y2=b2的一條切線(xiàn)并且過(guò)橢圓的右焦點(diǎn),記橢圓的離心率為e.
(1)求橢圓的離心率e的取值范圍;
(1)若直線(xiàn)l的傾斜角為$\frac{π}{6}$,求e的大。
(2)是否存在這樣的e,使得原點(diǎn)O關(guān)于直線(xiàn)l對(duì)稱(chēng)的點(diǎn)恰好在橢圓C上,若存在,請(qǐng)求出e的大小;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.?dāng)?shù)獨(dú)游戲越來(lái)越受人們喜愛(ài),今年某地區(qū)科技館組織數(shù)獨(dú)比賽,該區(qū)甲、乙、丙、丁四所學(xué)校的學(xué)生積極參賽,參賽學(xué)生的人數(shù)如表所示:
中學(xué) 甲 乙 丙 丁
人數(shù) 30 40 20 10
為了解參賽學(xué)生的數(shù)獨(dú)水平,該科技館采用分層抽樣的方法從這四所中學(xué)的參賽學(xué)生中抽取30名參加問(wèn)卷調(diào)查.
(Ⅰ)問(wèn)甲、乙、丙、丁四所中學(xué)各抽取多少名學(xué)生?
(Ⅱ)從參加問(wèn)卷調(diào)查的30名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來(lái)自同一所中學(xué)的概率;
(Ⅲ)在參加問(wèn)卷調(diào)查的30名學(xué)生中,從來(lái)自甲、丙兩所中學(xué)的學(xué)生中隨機(jī)抽取2名,用X表示抽得甲中學(xué)的學(xué)生人數(shù),求X的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案