10.已知雙曲線mx2-y2=1的漸近線方程為y=±3x,則m=(  )
A.$\frac{1}{3}$B.$\frac{1}{9}$C.3D.9

分析 根據(jù)雙曲線的方程求出雙曲線的漸近線方程,建立方程關(guān)系進行求解即可.

解答 解:由雙曲線的方程知m>0,
由mx2-y2=0得y=±$\sqrt{m}$x,
∵雙曲線的漸進線方程為y=±3x,
∴$\sqrt{m}$=3,得m=9,
故選:D

點評 本題主要考查雙曲線漸近線的求解,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知三棱錐P-ABC中,PA⊥AC,PC⊥BC,E為PB中點,D為AB的中點,且△ABE為正三角形.
(1)求證:BC⊥平面PAC;
(2)請作出點B在平面DEC上的射影H,并說明理由.若$BC=3,BH=\frac{12}{5}$,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在實數(shù)集R上的偶函數(shù)f(x),當x≥0時,f(x)=ex,若存在t∈R,對任意x∈[1,m](m>1,m∈N),都有f(x+t)≤ex,則m的最大值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).以O(shè)為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρ=2acosθ(a>0),且曲線C與直線l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)設(shè)A、B為曲線C上的兩點,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某金匠以黃金為原材料加工一種飾品,由于加工難度大,該金匠平均每加工5個飾品中有4個成品和1個廢品,每個成品可獲利3萬元,每個廢品損失1萬元,假設(shè)該金匠加工每件飾品互不影響.
(Ⅰ)若該金匠加工4個飾品,求其中廢品的數(shù)量不超過1的概率?
(Ⅱ)若該金匠加工了3個飾品,求他所獲利潤的數(shù)學(xué)期望.(兩小問的計算結(jié)果都用分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知{an}是等差數(shù)列,{bn}是各項均為正數(shù)的等比數(shù)列,a1=b1=1,a3b2=14,a3-b2=5.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)求數(shù)列{an+bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某儀器經(jīng)過檢驗合格才能出廠,初檢合格率為$\frac{3}{4}$:若初檢不合格,則需要進行調(diào)試,經(jīng)調(diào)試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為$\frac{4}{5}$.每臺儀器各項費用如表:
項目生產(chǎn)成本檢驗費/次調(diào)試費出廠價
金額(元)10001002003000
(Ⅰ)求每臺儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤=出廠價-生產(chǎn)成本-檢驗費-調(diào)試費);
(Ⅲ)假設(shè)每臺儀器是否合格相互獨立,記X為生產(chǎn)兩臺儀器所獲得的利潤,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知定義在R內(nèi)的函數(shù)f(x)滿足f(x+4)=f(x),當x∈[-1,3]時,$f(x)=\left\{\begin{array}{l}t({1-|x|}),x∈[{-1,1}]\\ \sqrt{1-{{({x-2})}^3}},x∈({1,3}]\end{array}\right.$,則當$t∈[{\frac{9}{5},2}]$時,方程5f(x)-x=0的不等實數(shù)根的個數(shù)是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx.
(1)證明:當x>1時,$x+1-\frac{{2({x-1})}}{f(x)}>0$;
(2)若函數(shù)g(x)=f(x)+x-ax2有兩個零點x1,x2(x1<x2,a>0),證明:$g'({\frac{{{x_1}+2{x_2}}}{3}})<1-a$.

查看答案和解析>>

同步練習冊答案