分析 (Ⅰ)求出${f^'}(x)=\frac{1-x}{x}(x>0)$,利用導(dǎo)函數(shù)的符號(hào),判斷函數(shù)的單調(diào)性.
(Ⅱ)設(shè)F(x)=xlnx-x+1,x>1,利用導(dǎo)函數(shù)F′(x)=1+lnx-1=lnx,判斷函數(shù)的單調(diào)性,然后最后證明原不等式成立;
解答 解:(Ⅰ)由f(x)=lnx-x+1,有${f^'}(x)=\frac{1-x}{x}(x>0)$,則f(x)在(0,1)上遞增,在(1,+∞)遞減;
(Ⅱ)證明:當(dāng)x∈(1,+∞)時(shí),1<$\frac{x-1}{lnx}$<x,即為lnx<x-1<xlnx.
結(jié)合(Ⅰ)知,當(dāng)x>1時(shí)f′(x)<0恒成立,即f(x)在(1,+∞)遞減,
可得f(x)<f(1)=0,即有l(wèi)nx<x-1;
設(shè)F(x)=xlnx-x+1,x>1,F(xiàn)′(x)=1+lnx-1=lnx,
當(dāng)x>1時(shí),F(xiàn)′(x)>0,可得F(x)遞增,即有F(x)>F(1)=0,
即有xlnx>x-1,則原不等式成立;
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性以及構(gòu)造法的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | $2\sqrt{5}$ | D. | $2\sqrt{21}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y=0 | B. | 2x-y-2=0 | C. | x+2y-3=0 | D. | x-2y+3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最小正周期為π的奇函數(shù) | B. | 最小正周期為π的偶函數(shù) | ||
C. | 最小正周期為$\frac{π}{2}$的奇函數(shù) | D. | 最小正周期為$\frac{π}{2}$的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
使用年限x(年) | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用y(萬元) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,π] | B. | $[0,\frac{π}{2})∪[\frac{3π}{4},π)$ | C. | $[0,\frac{π}{2})∪[\frac{π}{2},π)$ | D. | $[0,\frac{π}{2}]∪[\frac{3π}{4},π)$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com