13.設(shè)函數(shù)f(x)=lnx-x+1.
(Ⅰ)分析f(x)的單調(diào)性;
(Ⅱ)證明:當(dāng)x∈(1,+∞)時(shí),1<$\frac{x-1}{lnx}$<x.

分析 (Ⅰ)求出${f^'}(x)=\frac{1-x}{x}(x>0)$,利用導(dǎo)函數(shù)的符號(hào),判斷函數(shù)的單調(diào)性.
(Ⅱ)設(shè)F(x)=xlnx-x+1,x>1,利用導(dǎo)函數(shù)F′(x)=1+lnx-1=lnx,判斷函數(shù)的單調(diào)性,然后最后證明原不等式成立;

解答 解:(Ⅰ)由f(x)=lnx-x+1,有${f^'}(x)=\frac{1-x}{x}(x>0)$,則f(x)在(0,1)上遞增,在(1,+∞)遞減;
(Ⅱ)證明:當(dāng)x∈(1,+∞)時(shí),1<$\frac{x-1}{lnx}$<x,即為lnx<x-1<xlnx.
結(jié)合(Ⅰ)知,當(dāng)x>1時(shí)f′(x)<0恒成立,即f(x)在(1,+∞)遞減,
可得f(x)<f(1)=0,即有l(wèi)nx<x-1;
設(shè)F(x)=xlnx-x+1,x>1,F(xiàn)′(x)=1+lnx-1=lnx,
當(dāng)x>1時(shí),F(xiàn)′(x)>0,可得F(x)遞增,即有F(x)>F(1)=0,
即有xlnx>x-1,則原不等式成立;

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性以及構(gòu)造法的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.銳角三角形ABC中,sin(A+B)=$\frac{3}{5}$,sin(A-B)=$\frac{1}{5}$,設(shè)AB=3,則AB邊上的高為2+$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.求已知點(diǎn)P(5,0)及圓C:x2+y2-4x-8y-5=0,若直線l過點(diǎn)P且被圓C截得的弦AB長(zhǎng)是8,則直線 l的方程是x-5=0或7x+24y-35=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}y≥x+2\\ x+y≤6\\ x≥1\end{array}$,其中,則實(shí)數(shù)$\frac{y}{x+1}$的最小值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的焦點(diǎn)到漸近線的距離為3,則雙曲線C的虛軸長(zhǎng)為(  )
A.3B.6C.$2\sqrt{5}$D.$2\sqrt{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線l將圓x2+y2-2x-4y=0平分,且與直線x+2y=0垂直,則直線l的方程是( 。
A.2x-y=0B.2x-y-2=0C.x+2y-3=0D.x-2y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=sin(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\frac{1}{2}$是(  )
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如表的統(tǒng)計(jì)資料:
使用年限x(年)23456
維修費(fèi)用y(萬元)2.23.85.56.57.0
若由資料可知y對(duì)x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程;
(2)根據(jù)回歸直線方程,估計(jì)使用年限為12年時(shí),維修費(fèi)用是多少?
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.點(diǎn)P在曲線y=x3-x+7上移動(dòng),過點(diǎn)P的切線傾斜角的取值范圍是(  )
A.[0,π]B.$[0,\frac{π}{2})∪[\frac{3π}{4},π)$C.$[0,\frac{π}{2})∪[\frac{π}{2},π)$D.$[0,\frac{π}{2}]∪[\frac{3π}{4},π)$

查看答案和解析>>

同步練習(xí)冊(cè)答案