2.假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元)有如表的統(tǒng)計資料:
使用年限x(年)23456
維修費用y(萬元)2.23.85.56.57.0
若由資料可知y對x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程;
(2)根據(jù)回歸直線方程,估計使用年限為12年時,維修費用是多少?
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.

分析 (1)根據(jù)所給的數(shù)據(jù),做出變量x,y的平均數(shù),根據(jù)最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程;
(2)當(dāng)自變量為20時,代入線性回歸方程,求出維修費用,這是一個預(yù)報值.

解答 解:(1)由題意知$\overline{x}$=4,$\overline{y}$=5,$\stackrel{∧}$=$\frac{2×2.2+3×3.8+4×5.5+5×6.5+6×7-5×4×5}{4+9+16+25+36-5×16}$=1.23,
$\stackrel{∧}{a}$=5-4×1.23=0.08,
∴$\stackrel{∧}{y}$=1.23x+0.08
(2)當(dāng)自變量x=12時,預(yù)報維修費用是y=1.23×12+0.08=14.84(萬元),
即估計使用12年時,維修費用是14.84萬元.

點評 本題考查線性回歸方程,考查最小二乘法,考查預(yù)報值的求法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2-2x+3.
(1)是否存在實數(shù)m,使不等式m+f(x)>0對于任意x∈R恒成立?并說明理由;
(2)若存在實數(shù)x,使不等式m-f(x)>0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=lnx-x+1.
(Ⅰ)分析f(x)的單調(diào)性;
(Ⅱ)證明:當(dāng)x∈(1,+∞)時,1<$\frac{x-1}{lnx}$<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題“$?{x_0}∈R,x_0^3-x_0^2+1>0$”的否定是( 。
A.?x∈R,x3-x2+1≤0B.$?{x_0}∈R,x_0^3-x_0^2+1<0$
C.$?{x_0}∈R,x_0^3-x_0^2+1≤0$D.$?x∈R,x_0^3-x_0^2+1>0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果△A1B1C1 的三個內(nèi)角的余弦值分別等于△A2B2C2 的三個內(nèi)角的正弦值,則( 。
A.△A1B1C1 和△A2B2C2 都是銳角三角形
B.△A1B1C1 和△A2B2C2 都是鈍角三角形
C.△A1B1C1 是鈍角三角形,△A2B2C2 是銳角三角形
D.△A1B1C1 是銳角三角形,△A2B2C2 是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓的中心在原點,左焦點為F1(-$\sqrt{3}$,0),且右頂點為D(2,0).設(shè)點A的坐標(biāo)是(1,$\frac{1}{2}$)
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若P是橢圓上的動點,求線段PA的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果$\frac{sinα-2cosα}{2sinα+5cosα}=-5$,則tanα的值為( 。
A.-2B.2C.$\frac{23}{16}$D.$-\frac{23}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知sin(θ+kπ)=-2cos(θ+kπ)(k∈Z),則$\frac{4sinθ-2cosθ}{5cosθ+3sinθ}$=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)y=asinx+2b(a>0)的最大值為4,最小值為0,則a+b=3;此時函數(shù)y=bsinax的最小正周期為π.

查看答案和解析>>

同步練習(xí)冊答案