6.已知函數(shù)$f(x)=a{x^{\frac{3}{2}}}-lnx-\frac{2}{3}$的圖象的一條切線為x軸.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)令g(x)=|f(x)+f'(x)|,若不相等的兩個實數(shù)x1,x2滿足g(x1)=g(x2),求證:x1x2<1.

分析 (Ⅰ)設(shè)出切點坐標(biāo),得到關(guān)于a的方程組,求出a的值即可;
(Ⅱ)令$h(x)=\frac{2}{3}({x^{\frac{3}{2}}}-1)+\sqrt{x}-\frac{1}{x}-lnx$,根據(jù)函數(shù)的單調(diào)性求出g(x)的表達式,令G(x)=g(x)-g($\frac{1}{x}$),根據(jù)函數(shù)的單調(diào)性得到$g(x)-g(\frac{1}{x})>0$,從而證明結(jié)論即可.

解答 解:(Ⅰ)$f'(x)=\frac{3a}{2}\sqrt{x}-\frac{1}{x}$,x>0,
設(shè)切點坐標(biāo)為(x0,0),
由題意得$\left\{\begin{array}{l}f({x_0})=a{x_0}^{\frac{3}{2}}-ln{x_0}-\frac{2}{3}=0\\ f'({x_0})=\frac{3a}{2}\sqrt{x_0}-\frac{1}{x_0}=0\end{array}\right.$,解得$\left\{\begin{array}{l}{x_0}=1\\ a=\frac{2}{3}.\end{array}\right.$;
(Ⅱ)證明:$g(x)=|\frac{2}{3}({x^{\frac{3}{2}}}-1)+\sqrt{x}-\frac{1}{x}-lnx|$,令$h(x)=\frac{2}{3}({x^{\frac{3}{2}}}-1)+\sqrt{x}-\frac{1}{x}-lnx$,
則$h'(x)=(\sqrt{x}-\frac{1}{x})+(\frac{1}{{2\sqrt{x}}}+\frac{1}{x^2})$,當(dāng)x≥1時,$\sqrt{x}-\frac{1}{x}≥0$,h'(x)>0,
h'(x)又可以寫成$(\sqrt{x}+\frac{1}{{2\sqrt{x}}})+\frac{1-x}{x^2}$,當(dāng)0<x<1時,$\frac{1-x}{x^2}>0$,h'(x)>0.
因此h'(x)在(0,+∞)上大于0,h(x)在(0,+∞)上單調(diào)遞增,又h(1)=0,
因此h(x)在(0,1)上小于0,在(1,+∞)上大于0,
$g(x)=\left\{\begin{array}{l}h(x),x≥1\\-h(x),0<x<1\end{array}\right.$且g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,g(1)=0.
當(dāng)x>1時,$0<\frac{1}{x}<1$,
記$G(x)=g(x)-g(\frac{1}{x})=h(x)-[{-h(\frac{1}{x})}]=f(x)+f'(x)+f(\frac{1}{x})+f'(\frac{1}{x})$,
記函數(shù)y=f'(x)的導(dǎo)函數(shù)為y=f''(x),
則$G'(x)=f'(x)+f''(x)-\frac{1}{x^2}f'(\frac{1}{x})-\frac{1}{x^2}f''(\frac{1}{x})$
=$(\sqrt{x}-\frac{1}{x})+(\frac{1}{{2\sqrt{x}}}+\frac{1}{x^2})-\frac{1}{x^2}(\frac{1}{{\sqrt{x}}}-x)-\frac{1}{x^2}(\frac{{\sqrt{x}}}{2}+{x^2})$
=$(\sqrt{x}-1)+\frac{x-1}{{2x\sqrt{x}}}+\frac{{\sqrt{x}-1}}{{{x^2}\sqrt{x}}}>0$,
故G(x)在(1,+∞)上單調(diào)遞增,
所以G(x)>G(1)=0,所以$g(x)-g(\frac{1}{x})>0$,
不妨設(shè)0<x1<1<x2,則$g({x_1})=g({x_2})>g(\frac{1}{x_2})$,
而0<x1<1,$0<\frac{1}{x_2}<1$,有單調(diào)性知${x_1}<\frac{1}{x_2}$,即x1x2<1.

點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期為π,將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位長度后所得的函數(shù)圖象過點P(0,1),則函數(shù)f(x)( 。
A.有一個對稱中心$({\frac{π}{12},0})$B.有一條對稱軸$x=\frac{π}{6}$
C.在區(qū)間$[{-\frac{π}{12},\frac{5π}{12}}]$上單調(diào)遞減D.在區(qū)間$[{-\frac{5π}{12},\frac{π}{12}}]$上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$f(x)=2sin(2x+ϕ)(|ϕ|<\frac{π}{2})$的圖象向左平移$\frac{π}{6}$個單位長度后對應(yīng)的函數(shù)是奇函數(shù),函數(shù)$g(x)=(2+\sqrt{3})cos2x$.若關(guān)于x的方程f(x)+g(x)=-2在[0,π)內(nèi)有兩個不同的解α,β,則cos(α-β)的值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,點P是平行四邊形ABCD所在平面外一點,△PBC是等邊三角形,點A在平面PBC的正投影E恰好是PB中點.
(Ⅰ)求證:PD∥平面ACE
(Ⅱ)若AB⊥PA,BC=2,求點P到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a+\overrightarrow b|=5$,$|\overrightarrow a-\overrightarrow b|=3$,則$\overrightarrow a•\overrightarrow b$=( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,則下列命題:
①若a∥b,則a∥c,b∥c;
②若a∩b=O,則O∈c;
③若a⊥b,b⊥c,則a⊥c.
其中正確的命題是( 。
A.①②③B.②③C.①③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-1的圖象與x軸相切.
(Ⅰ)求證:f(x)≤$\frac{{{{(x-1)}^2}}}{x}$;
(Ⅱ)若1<x<$\sqrt$,求證:(b-1)logbx>$\frac{{{x^2}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.等差數(shù)列{an}前n項和為Sn,S7+S5=10,a3=5,則S7=( 。
A.25B.49C.-15D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖所示,在正方體AC1中,AB=2,A1C1∩B1D1=E,直線AC與直線DE所成的角為α,直線DE與平面BCC1B1所成的角為β,則cos(α-β)=$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

同步練習(xí)冊答案