11.已知$f(x)=xlnx,g(x)=\int_0^x{(3{t^2}+2at-1)dt}$
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(3)對(duì)一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)通過(guò)討論t的范圍,求出函數(shù)f(x)的最小值即可;
(3)問(wèn)題轉(zhuǎn)化為2xlnx≤3x2+2ax+1,可得a≥lnx-$\frac{3}{2}$x-$\frac{1}{2x}$,設(shè)h(x)=lnx-$\frac{3}{2}$x-$\frac{1}{2x}$,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:(1)f′(x)=lnx+1,
令f′(x)<0,解得:0<x<$\frac{1}{e}$,令f′(x)>0,解得:x>$\frac{1}{e}$,
∴f(x)在(0,$\frac{1}{e}$)遞減,在($\frac{1}{e}$,+∞)遞增;
(2)(。0<t<t+2<$\frac{1}{e}$,t無(wú)解;
(ⅱ)0<t<$\frac{1}{e}$<t+2,即0<t<$\frac{1}{e}$時(shí),f(x)min=f($\frac{1}{e}$)=-$\frac{1}{e}$;
(ⅲ)$\frac{1}{e}$≤t<t+2,即t≥$\frac{1}{e}$時(shí),f(x)在[t,t+2]遞增,
f(x)min=f(t)=tlnt,
∴f(x)min=$\left\{\begin{array}{l}{-\frac{1}{e},0<t<\frac{1}{e}}\\{tlnt,t≥\frac{1}{e}}\end{array}\right.$;
(3)由題意:2xlnx≤3x2+2ax-1+2在x∈(0,+∞)上恒成立,
即2xlnx≤3x2+2ax+1,可得a≥lnx-$\frac{3}{2}$x-$\frac{1}{2x}$,
設(shè)h(x)=lnx-$\frac{3}{2}$x-$\frac{1}{2x}$,則h′(x)=-$\frac{(x-1)(3x+1)}{{2x}^{2}}$,
令h′(x)=0,得x=1,x=-$\frac{1}{3}$(舍)
當(dāng)0<x<1時(shí),h′(x)>0;當(dāng)x>1時(shí),h′(x)<0,
∴當(dāng)x=1時(shí),h(x)取得最大值,h(x)max=-2,
∴a≥-2.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若將函數(shù)f(x)=sin2x+cos2x的圖象向左平移φ個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,則φ的最小正值是(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{3π}{8}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓于A.B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-$\frac{\sqrt{5}}{5}$),則E的方程為( 。
A.$\frac{{x}^{2}}{10}$+y2=1B.$\frac{{x}^{2}}{19}$+$\frac{{y}^{2}}{10}$=1C.$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在如圖所示的幾何體中,A1B1C1-ABC是直三棱柱,四邊形ABDC是梯形,AB∥CD,且$AB=BD=\frac{1}{2}CD=2$,∠BDC=60°,E是C1D的中點(diǎn).
(Ⅰ)求證:AE∥平面BB1D;
(Ⅱ)當(dāng)AE與平面ABCD所成角的正切值為$\frac{1}{2}$時(shí),求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若點(diǎn)P在圓${C_1}:{(x-2)^2}+{(y-2)^2}=1$上,點(diǎn)Q在圓${C_2}:{(x+2)^2}+{(y+1)^2}=4$上,則|PQ|的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知冪函數(shù)f(x)=xα,其中$α∈\{-2,-1,\frac{1}{2},1,2,3\}$,則使f(x)為奇函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù)的α的所有值為1,3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知f(x)=$\left\{\begin{array}{l}{x-3(x≥9)}\\{f(x+6)(x<9)}\end{array}\right.$,則f(5)的值為( 。
A.2B.8C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知方程x2+y2+2x-2y+1=0.
(1)求x2+y2的最大值.
(2)求$\frac{y-2}{x-1}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某一無(wú)上蓋幾何體的三視圖,則該幾何體的表面積等于( 。
A.39πB.48πC.57πD.63π

查看答案和解析>>

同步練習(xí)冊(cè)答案