16.已知命題p:?a∈R,且a>0,a+$\frac{1}{a}$≥2,命題q:?x0∈R,sinx0+cosx0=$\sqrt{3}$,則下列判斷正確的是(  )
A.p是假命題B.q是真命題C.(¬q)是真命題D.(¬p)∧q是真命題

分析 利用基本不等式的性質(zhì)即可判斷出命題p的真假;利用三角函數(shù)的單調(diào)性值域即可判斷出命題q的真假.

解答 解:命題p:?a∈R,且a>0,由基本不等式的性質(zhì)可得:a+$\frac{1}{a}$≥2,當(dāng)且僅當(dāng)a=1時(shí)取等號(hào),是真命題.
命題q:∵sinx+cosx=$\sqrt{2}$sin$(x+\frac{π}{4})$≤$\sqrt{2}$,因此不存在x0∈R,sinx0+cosx0=$\sqrt{3}$,因此q是假命題.
則下列判斷正確的是(¬q)是真命題.
故選:C.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、三角函數(shù)的單調(diào)性值域、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.根據(jù)表格內(nèi)的數(shù)據(jù),可以斷定方程ex-x-3=0的一個(gè)根所在區(qū)間是( 。
x-10123
ex0.3712.727.3920.08
x+323456
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)在(0,+∞)上的最小值;
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,虛線部分是平面直角坐標(biāo)系四個(gè)象限的角平分線,實(shí)線部分是函數(shù)y=f(x)的部分圖象,則f(x)可能是( 。
A.x2sinxB.xsinxC.x2cosxD.xcosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.命題p:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為∅;
命題q:函數(shù)y=(2a2-a)x增函數(shù).若p∨q是真命題p∧q是假命題.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在區(qū)間($\frac{1}{2}$,3)上既有極大值又有極小值,則實(shí)數(shù)a的取值范圍是( 。
A.(2,+∞)B.[2,+∞)C.(2,$\frac{5}{2}$)D.(2,$\frac{10}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若數(shù)列{an}滿足$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為調(diào)和數(shù)列.
(1)已知數(shù)列{an}為調(diào)和數(shù)列.且滿足a1=1,a2=$\frac{1}{2}$.求{an}的通項(xiàng)公式;
(2)若數(shù)列{(2n+1)bn}為調(diào)和數(shù)列,且b1=$\frac{1}{3}$,b2=$\frac{1}{15}$,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.方程x+m=-$\sqrt{4-{x}^{2}}$有且僅有一解,則實(shí)數(shù)m的取值范圍是{-2$\sqrt{2}$}∪(-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.與cos50°cos20°+sin50°sin20°相等的是( 。
A.cos30°B.sin30°C.cos70°D.sin70°

查看答案和解析>>

同步練習(xí)冊(cè)答案