12.已知復(fù)數(shù)z滿足z(1+i)=1-i,則z的共軛復(fù)數(shù)為( 。
A.iB.1+iC.1-iD.-i

分析 由條件求出z,可得復(fù)數(shù)z的共軛復(fù)數(shù).

解答 解:∵z(1+i)=1-i,
∴z=$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=-i,
∴z的共軛復(fù)數(shù)為i,
故選:A

點(diǎn)評 本題主要考查復(fù)數(shù)的基本概念,兩個復(fù)數(shù)代數(shù)形式的乘除法法則的應(yīng)用,虛數(shù)單位i的冪運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x,y滿足約束條件$\left\{\begin{array}{l}3x-y+2≥0\\ x-y-2≤0\\ 3x+2y-6≤0\end{array}\right.$,則x2+y2+10x+6y+34的最小值是10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦點(diǎn)向圓x2+y2=a2作一條切線,若該切線與雙曲線的兩條漸近線截得的線段長為$\sqrt{3}a$,則該雙曲線的離心率為2或$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直線l的參數(shù)方程是$\left\{\begin{array}{l}x=2t\\ y=4t+a\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=4cosθ-4sinθ.
(1)求圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若圓上有且僅有三個點(diǎn)到直線l距離為$\sqrt{2}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)z滿足z(2+i)=1+3i,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將函數(shù)$f(x)=sin({2x-\frac{π}{6}})$的圖象向右平移$\frac{π}{12}$個單位后得到的圖象的一條對稱軸是( 。
A.$x=\frac{π}{4}$B.$x=\frac{3π}{8}$C.$x=\frac{5π}{12}$D.$x=\frac{7π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x2+|ax+1|,命題p:?a∈R,f(x)為偶函數(shù),則¬p為(  )
A.?a∈R,f(x)為奇函數(shù)B.?a∈R,f(x)為奇函數(shù)
C.?a∈R,f(x)不為偶函數(shù)D.?a∈R,f(x)不為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為30秒,小明來到該路口遇到紅燈,則至少需要等待10秒才出現(xiàn)綠燈的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知長方體切去一個角的幾何體直觀圖如圖1所示給出下列4個平面圖如圖2:

則該幾何體的主視圖、俯視圖、左視圖的序號依次是(  )
A.(1)(3)(4)B.(2)(4)(3)C.(1)(3)(2)D.(2)(4)(1)

查看答案和解析>>

同步練習(xí)冊答案