16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$是(-∞,+∞)上的減函數(shù),那么a的取值范圍是(  )
A.(0,1)B.(0,$\frac{1}{3}$)C.[$\frac{1}{6}$,$\frac{1}{3}$)D.($\frac{1}{6}$,$\frac{1}{3}$)

分析 利用分段函數(shù)以及函數(shù)的單調(diào)性,列出不等式組,求得a的范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$是(-∞,+∞)上的減函數(shù),
∴$\left\{\begin{array}{l}{3a-1<0}\\{0<a<1}\\{3a-1+4a≥a}\end{array}\right.$,求得$\frac{1}{6}$≤a<$\frac{1}{3}$,
故選:C.

點評 本題主要考查函數(shù)的單調(diào)性的性質(zhì),指數(shù)函數(shù)、一次函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.過拋物線y2=4x的焦點F的直線交拋物線于A,B兩點,點O是原點,若|AF|=4,則△AOB的面積為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列不等式恒成立的個數(shù)有( 。
①ab≤($\frac{a+b}{2}$)2≤$\frac{{a}^{2}+^{2}}{2}$(a,b∈R);    
②若實數(shù)a>0,則lga+$\frac{1}{lga}$≥2;
③若實數(shù)a>1,則a+$\frac{4}{a-1}$≥5.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若點(2a,a+1)在圓x2+(y-1)2=5的內(nèi)部,則a的取值范圍是-1<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|y=$\sqrt{1-x}$},B={y|y=2x+lna},且A⊆∁RB,則實數(shù)a的取值范圍是(  )
A.[e,+∞)B.(0,e]C.(-∞,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合M={x|-1≤x<3 },N={x|2<x≤5},則M∪N={x|-1≤x≤5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|y=lnx},B={-2,-1,1,2},則A∩B=( 。
A.{-1,-2}B.{1,2}C.(0,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓錐的表面積等于12πcm2,其側(cè)面展開圖是一個半圓,則底面圓的半徑為( 。
A.1cmB.2cmC.3cmD.$\frac{3}{2}cm$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知平面ABCD⊥平面ADEF,AB⊥AD,CD⊥AD,且AB=1,AD=CD=2.ADEF是正方形,在正方形ADEF內(nèi)部有一點M,滿足MB,MC與平面ADEF所成的角相等,則點M的軌跡長度為$\frac{4}{9}$π.

查看答案和解析>>

同步練習(xí)冊答案