8.已知函數(shù)f(x)=x2e-x,當(dāng)曲線y=f(x)的切線斜率為負(fù)數(shù)時,求切線在x軸上截距的取值范圍(-∞,0)∪[2$\sqrt{2}$+3,+∞).

分析 利用導(dǎo)數(shù)的幾何意義即可得到切線的斜率,得出切線的方程,利用方程求出與x軸交點(diǎn)的橫坐標(biāo),再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值即可.

解答 解:設(shè)切點(diǎn)為(x0,${{x}_{0}}^{2}{e}^{-{x}_{0}}$),
則切線方程為y-${{x}_{0}}^{2}{e}^{-{x}_{0}}$=${e}^{-{x}_{0}}$($2{x}_{0}-{{x}_{0}}^{2}$)(x-x0),
令y=0,解得x=(x0-2)+$\frac{2}{{x}_{0}-2}$+3,
∵曲線y=f(x)的切線l的斜率為負(fù)數(shù),
∴${e}^{-{x}_{0}}$($2{x}_{0}-{{x}_{0}}^{2}$)<0,
∴x0<0或x0>2,
令f(x0)=(x0-2)+$\frac{2}{{x}_{0}-2}$+3,
則f′(x0)=$\frac{({{x}_{0}}^{2}-2)^{2}-2}{({{x}_{0}}^{2}-2)^{2}}$.
①當(dāng)x0<0時,$({x}_{0}-2)^{2}-2$>0,即f′(x0)>0,
∴f(x0)在(-∞,0)上單調(diào)遞增,∴f(x0)<f(0)=0;
②當(dāng)x0>2時,令f′(x0)=0,解得x0=2+$\sqrt{2}$.
當(dāng)x0>2+$\sqrt{2}$時,f′(x0)>0,函數(shù)f(x0)單調(diào)遞增;
當(dāng)2<x0<2+$\sqrt{2}$時,f′(x0)<0,函數(shù)f(x0)單調(diào)遞減.
故當(dāng)x0=2+$\sqrt{2}$時,函數(shù)f(x0)取得極小值,也即最小值,且f(2+$\sqrt{2}$)=2 $\sqrt{2}$+3.
綜上可知:切線l在x軸上截距的取值范圍是(-∞,0)∪[2 $\sqrt{2}$+3,+∞).
故答案為(-∞,0)∪[2 $\sqrt{2}$+3,+∞).

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、切線、函數(shù)的值域,綜合性強(qiáng),考查了推理能力和計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=xlnx,當(dāng)x2>x1>0時,下列結(jié)論中正確的命題的序號是④.
①(x1-x2)•[f(x1-f(x2)]<0;
②$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1;
③f(x1)+x2<f(x2)+x1;
④x2f(x1)<x1f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若x>0,則函數(shù)y=x+$\frac{1}{x}$+$\frac{16x}{{x}^{2}+1}$的最小值為( 。
A.16B.8C.10D.沒有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.方程f(x)=x的根稱為函數(shù)f(x)的不動點(diǎn),若函數(shù)f(x)=$\frac{x}{a(x+2)}$有唯一不動點(diǎn),且x1=1000,xn+1=$\frac{1}{{f(\frac{1}{x_n})}}$,n=1,2,3,…,則x2015=2007.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$═1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,x軸被曲線C2:y=x2-b截得的線段長等于C1的長半軸長.C2與y軸的交點(diǎn)為M,過坐標(biāo)原點(diǎn)O的直線l與C2相交于點(diǎn)A,B,兩直線MA,MB分別與C1相交于點(diǎn)D,E.
①曲線C1,C2的方程分別為$\frac{{x}^{2}}{4}$+y2=1,y=x2-1;
②MD⊥ME;
③記△MAB,△MDE的面積分別為S1,S2,則$\frac{{S}_{1}}{{S}_{2}}$的最大值為$\frac{25}{64}$;
④記△MAB,△MDE的面積分別為S1,S2,當(dāng)$\frac{{S}_{1}}{{S}_{2}}$=$\frac{17}{32}$時,直線l的方程為:y=$\frac{3}{2}$x或y=-$\frac{3}{2}$x.
以上列說法正確的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),短軸端點(diǎn)到其右焦點(diǎn)F(2,0)的距離為$\sqrt{5}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓W的方程;
(2)設(shè)A,B,C是橢圓W上的三個點(diǎn),判斷四邊形OABC能否為矩形?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某農(nóng)場在冬季進(jìn)行一次菌種培養(yǎng)需要5天時間,5天內(nèi)每天發(fā)生低溫凍害的概率均為$\frac{1}{3}$.如果5天內(nèi)沒有發(fā)生凍害,可獲利潤10萬元,有一天發(fā)生凍害可獲利潤5萬元,有兩天發(fā)生凍害可獲利潤0萬元,而發(fā)生3天或3天以上凍害則損失2萬元.
(1)求一次菌種培養(yǎng)不出現(xiàn)虧損的概率;
(2)求一次菌種培養(yǎng)獲得利潤ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)證明柯西不等式:若a,b,c,d都是實(shí)數(shù),則(a2+b2)(c2+d2)≥(ac+bd)2,并指出此不等式里等號成立的條件:
(2)用柯西不等式求函數(shù)y=2$\sqrt{x-3}$+4$\sqrt{5-x}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2x+2-x
(1)求方程f(x)=$\frac{5}{2}$的根;
(2)求證:f(x)在[0,+∞)上是增函數(shù);
(3)若對于任意x∈[0,+∞),不等式f(2x)≥f(x)-m恒成立,求實(shí)數(shù)m的最小值.

查看答案和解析>>

同步練習(xí)冊答案