分析 利用導(dǎo)數(shù)的幾何意義即可得到切線的斜率,得出切線的方程,利用方程求出與x軸交點(diǎn)的橫坐標(biāo),再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值即可.
解答 解:設(shè)切點(diǎn)為(x0,${{x}_{0}}^{2}{e}^{-{x}_{0}}$),
則切線方程為y-${{x}_{0}}^{2}{e}^{-{x}_{0}}$=${e}^{-{x}_{0}}$($2{x}_{0}-{{x}_{0}}^{2}$)(x-x0),
令y=0,解得x=(x0-2)+$\frac{2}{{x}_{0}-2}$+3,
∵曲線y=f(x)的切線l的斜率為負(fù)數(shù),
∴${e}^{-{x}_{0}}$($2{x}_{0}-{{x}_{0}}^{2}$)<0,
∴x0<0或x0>2,
令f(x0)=(x0-2)+$\frac{2}{{x}_{0}-2}$+3,
則f′(x0)=$\frac{({{x}_{0}}^{2}-2)^{2}-2}{({{x}_{0}}^{2}-2)^{2}}$.
①當(dāng)x0<0時,$({x}_{0}-2)^{2}-2$>0,即f′(x0)>0,
∴f(x0)在(-∞,0)上單調(diào)遞增,∴f(x0)<f(0)=0;
②當(dāng)x0>2時,令f′(x0)=0,解得x0=2+$\sqrt{2}$.
當(dāng)x0>2+$\sqrt{2}$時,f′(x0)>0,函數(shù)f(x0)單調(diào)遞增;
當(dāng)2<x0<2+$\sqrt{2}$時,f′(x0)<0,函數(shù)f(x0)單調(diào)遞減.
故當(dāng)x0=2+$\sqrt{2}$時,函數(shù)f(x0)取得極小值,也即最小值,且f(2+$\sqrt{2}$)=2 $\sqrt{2}$+3.
綜上可知:切線l在x軸上截距的取值范圍是(-∞,0)∪[2 $\sqrt{2}$+3,+∞).
故答案為(-∞,0)∪[2 $\sqrt{2}$+3,+∞).
點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、切線、函數(shù)的值域,綜合性強(qiáng),考查了推理能力和計算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 10 | D. | 沒有最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com