14.已知圓x2+y2=16,直線l:y=x+b.圓上至少有三個點到直線l的距離等于1,則b的取值范圍是-3$\sqrt{2}$≤b≤3$\sqrt{2}$.

分析 若圓上至少有三個點到直線l的距離等于1,則滿足O到直線l:y=x+b的距離d≤3,代入點到直線的距離公式,可得答案.

解答 解:由圓C的方程:x2+y2=16,可得圓C的圓心為原點O(0,0),半徑為4
若圓上至少有三個點到直線l的距離等于1,則滿足O到直線l:y=x+b的距離d≤3,
∵直線l的一般方程為:x-y+b=0,
∴d=$\frac{|b|}{\sqrt{2}}$≤3,
解得-3$\sqrt{2}$≤b≤3$\sqrt{2}$,
即b的取值范圍是-3$\sqrt{2}$≤b≤3$\sqrt{2}$,
故答案為:-3$\sqrt{2}$≤b≤3$\sqrt{2}$.

點評 本題考查直線與圓的位置關系,考查點到直線的距離公式,其中分析出O到直線l:y=x+b的距離是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.甲、乙兩人參加法律知識競賽,共有10道不同的題目,其中選擇題有6道,判斷題4道,甲、乙兩人依次各抽一題(不能抽同一題).則甲、乙中至少有一人抽到選擇題的概率等于$\frac{13}{15}$.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,
(1)證明:PA∥平面EDB
(2)證明:平面BDE⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球.乙箱子里裝有1個白球、2個黑球.每次游戲從這兩個箱子里隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(1)求在1次游戲結(jié)束后,?①摸出3個白球的概率??②獲獎的概率?
(2)求在2次游戲中獲獎次數(shù)X的分布列及數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知sinθ=-$\frac{1}{3}$,且-π<θ<-$\frac{π}{2}$,則θ可表示為( 。
A.$arcsin\frac{1}{3}$B.$-\frac{π}{2}-arcsin(-\frac{1}{3})$C.$-π+arcsin(-\frac{1}{3})$D.$-π-arcsin(-\frac{1}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設an=-n2+9n+10,則數(shù)列{an}前n項和最大值n的值為(  )
A.4B.5C.9或10D.4或5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設函數(shù)f(x)=xekx(k>0),若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)單調(diào)遞增,k的取值范圍[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.閱讀如圖所示的程序框圖,運行相應的程序,輸出的S值為-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知cos(π+α)=-$\frac{3}{5}$,α是第四象限角,那么sin(3π+α)的值是( 。
A.$\frac{3}{5}$B.-$\frac{4}{5}$C.$\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

同步練習冊答案