12.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于6+1.5πcm3

分析 根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.

解答 解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,

結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:
V=V三棱柱+V半圓柱=$\frac{1}{2}$×2×2×3+$\frac{1}{2}$•π•12×3=(6+1.5π)cm3
故答案為:6+1.5π.

點(diǎn)評(píng) 本題考查了利用三視圖求幾何體體積的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)是定義域R上的奇函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若$\frac{|f(lnx)-f(ln\frac{1}{x})|}{2}$<f(1),則x的取值范圍為( 。
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知A(5,3),F(xiàn)是拋物線y2=4x的焦點(diǎn),P是拋物線上的動(dòng)點(diǎn),則△PAF周長(zhǎng)的最小值為( 。
A.9B.10C.11D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心在原點(diǎn),F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),A,B分別是橢圓的上頂點(diǎn)和右頂點(diǎn),P是橢圓上一點(diǎn),且PF1⊥x軸,PF2∥AB,則此橢圓的離心率等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題p1:若sinx≠0,則sinx+$\frac{1}{sinx}$≥2恒成立;p2:x+y=0的充要條件是$\frac{x}{y}$=-1,則下列命題為真命題的是( 。
A.p1∧p2B.p1∨p2C.p1∧(¬p2D.(¬p1)∨p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如果x,y滿足$\left\{{\begin{array}{l}{2x-y+1≤0}\\{x-y+1≥0}\\{2x+y+5≥0}\end{array}}\right.$,則$z=\frac{x+2y-3}{x+1}$的取值范圍是( 。
A.$({-∞,-\frac{8}{5}}]∪[{3,+∞})$B.$[{-1,\frac{1}{7}}]$C.(-1,0]∪[3,+∞)D.(-∞,-1]∪[7,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,且過點(diǎn)$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)若直線l:y=kx+m(k>0)與E相交于P,Q兩點(diǎn),且OP與OQ(O為坐標(biāo)原點(diǎn))的斜率之和為2,求O到直線l距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知△ABC中,AB=2$\sqrt{3}$,AC+$\sqrt{3}$BC=6,D為AB的中點(diǎn),當(dāng)CD取最小值時(shí),△ABC面積為$\frac{3\sqrt{23}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.哈六中在2017年3月中旬舉辦了一次知識(shí)競(jìng)賽,經(jīng)過層層篩選,最后五名同學(xué)進(jìn)入了總決賽.在進(jìn)行筆答題知識(shí)競(jìng)賽中,最后一個(gè)大題是選做題,要求參加競(jìng)賽的五名選手從2道題中選做一道進(jìn)行解答,假設(shè)這5位選手選做每一題的可能性均為$\frac{1}{2}$.
(Ⅰ)求其中甲乙2位選手選做同一道題的概率.
(Ⅱ)設(shè)這5位選手中選做第1題的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案