2.已知函數(shù)f(x)=|2x+a|+|2x-2b|+3
(Ⅰ)若a=1,b=1,求不等式f(x)>8的解集;
(Ⅱ)當(dāng)a>0,b>0時(shí),若f(x)的最小值為5,求$\frac{1}{a}$+$\frac{1}$的最小值.

分析 (Ⅰ)若a=1,b=1,不等式f(x)>8為|2x+1|+|2x-2|>5,分類討論求不等式f(x)>8的解集;
(Ⅱ)f(x)的最小值為a+2b+3,利用“1”的代換,結(jié)合基本不等式,即可得出結(jié)論.

解答 解:(Ⅰ)若a=1,b=1,不等式f(x)>8為|2x+1|+|2x-2|>5
x≥1,不等式可化為4x-1>5,∴x>1.5,
-0.5<x<1,不等式可化為3>5,不成立,
x≤-0.5,不等式可化為1-4x>5,∴x<-1,
綜上所述,不等式的解集為{x|x<-1或x>1.5};
(Ⅱ)f(x)=|2x+a|+|2x-2b|+3≥|2x+a-2x+2b|+3=|a+2b|+3,
∵a>0,b>0,∴f(x)的最小值為a+2b+3,
∴a+2b+3=5,∴a+2b=2,
∴$\frac{1}{a}$+$\frac{1}$=$\frac{1}{2}$($\frac{1}{a}$+$\frac{1}$)(a+2b)=$\frac{1}{2}$(3+$\frac{2b}{a}$+$\frac{a}$)≥$\frac{3+2\sqrt{2}}{2}$,
∴$\frac{1}{a}$+$\frac{1}$的最小值為$\frac{3+2\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題考查不等式的解法,考查絕對(duì)值不等式的運(yùn)用,考查基本不等式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,拋物線C1:y=b-x2經(jīng)過橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)及上頂點(diǎn)M,過點(diǎn)M的兩條互相垂直的直線l1,l2分別交拋物線于A,B兩點(diǎn),交橢圓于D,E兩點(diǎn),已知拋物線C1:y=b-x2與x軸所圍成的區(qū)域面積為$\frac{4}{3}$.
(1)求C1,C2的方程;
(2)記△MAB,△MDE的面積分別為S1,S2,若$\frac{{S}_{1}}{{S}_{2}}$=$\frac{5}{8}$,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.有下列命題:
①在函數(shù)$y=cos({x-\frac{π}{4}})cos({x+\frac{π}{4}})$的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為π;
②函數(shù)y=$\frac{x+3}{x-1}$的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分條件;
④已知命題p:對(duì)任意的x∈R,都有sinx≤1,則¬p是:存在x∈R,使得sinx>1;
⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,則角C等于30°或150°.
其中所有真命題的個(gè)數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦點(diǎn)重合,離心率互為倒數(shù),設(shè)F1,F(xiàn)2為雙曲線C的左、右焦點(diǎn),P為右支上任意一點(diǎn),則$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知不等式組$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{y+x-k≤0}\end{array}\right.$表示的平面區(qū)域的面積為$\frac{4}{3}$,則$\frac{y}{x+1}$的取值范圍為[0,$\frac{8}{7}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),A是圓F1上的一動(dòng)點(diǎn),線段F2A的垂直平分線交半徑F1A于P點(diǎn).
(Ⅰ)求P點(diǎn)的軌跡C的方程;
(Ⅱ)四邊形EFGH的四個(gè)頂點(diǎn)都在曲線C上,且對(duì)角線EG,F(xiàn)H過原點(diǎn)O,若kEG•kFH=-$\frac{3}{4}$,求證:四邊形EFGH的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=2017x+log2017x,則f(x)在R上的零點(diǎn)的個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.“a=$\frac{1}{5}$”是“直線2ax+(a-1)y+2=0與直線(a+1)x+3ay+3=0垂直”的充分不必要.條件(從“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中選取一個(gè)填入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某公司在銷售某種環(huán)保材料過程中,記錄了每日的銷售量x(噸)與利潤(rùn)y(萬元)的對(duì)應(yīng)數(shù)據(jù),下表是其中的幾組對(duì)應(yīng)數(shù)據(jù),由此表中的數(shù)據(jù)得到了y關(guān)于x的線性回歸方程$\widehat{y}$=0.7x+a,若每日銷售量達(dá)到10噸,則每日利潤(rùn)大約是(  )
 x 3 5
 y 2.5 3 4 4.5
A.7.2萬元B.7.35萬元C.7.45萬元D.7.5萬元

查看答案和解析>>

同步練習(xí)冊(cè)答案