19.數(shù)列1,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…,$\frac{1}{1+2+…+n}$的前n項和為( 。
A.$\frac{2n}{2n+1}$B.$\frac{2n}{n+1}$C.$\frac{n+2}{n+1}$D.$\frac{n}{2n+1}$

分析 求出通項公式的分母,利用裂項消項法求解數(shù)列的和即可.

解答 解:$\frac{1}{1+2+…+n}$=$\frac{1}{\frac{n(n+1)}{2}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$).
數(shù)列1,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…,$\frac{1}{1+2+…+n}$的前n項和:
數(shù)列1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+n}$=2(1$-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+$\frac{1}{3}-\frac{1}{4}$+…$+\frac{1}{n}-\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$.
故選:B.

點評 本題考查數(shù)列求和的方法,裂項消項法的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.定義在R上的偶函數(shù)f(x)滿足:對任意的x1,x2∈(-∞,0),有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,則(  )
A.f(-4)<f(3)<f(-2)B.f(-2)<f(3)<f(-4)C.f(3)<f(-2)<f(-4)D.f(-4)<f(-2)<f(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知I是虛數(shù)單位,若(2+i)(m-2i)是實數(shù),則實數(shù)m=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在銳角△ABC中,sinA=sinBsinC,則tanB+2tanC的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.從3名男生和3名女生中選出4人分別分別擔任辯論賽中的一、二、三、四辯手,其中男生甲不能擔任一辯手,那么不同的編隊形式有300種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若數(shù)據(jù)x1,x2,…,x8的方差為3,則數(shù)據(jù)2x1,2x2,..,2x8的方差為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,等腰梯形AMNB內(nèi)接于半圓O,直徑AB=4,MN=2,MN的中點為C,則$\overrightarrow{AM}$•$\overrightarrow{BC}$的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a,a∈R
(1)當a=0時,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個不同的極值點(極值點是指函數(shù)取極值時對應的自變量的值),記為x1,x2,且x1<x2
(ⅰ)求a的取值范圍;
(ⅱ)若不等式e1+λ<x1•x${\;}_{2}^{λ}$恒成立,求正實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.直線x-y=0的傾斜角為( 。
A.1B.$\frac{π}{4}$C.-1D.$\frac{3π}{4}$

查看答案和解析>>

同步練習冊答案