分析 (1)對函數(shù)f(x)進行求導,令導數(shù)大于等于0在x>0上恒成立即可.
(2)將a的值代入整理成方程的形式,然后轉化為函數(shù)考慮其圖象與x軸的交點的問題.
解答 解:(1)f'(x)=-$\frac{{ax}^{2}+2x-1}{x}$(x>0),
依題意f'(x)≥0 在x>0時恒成立,即ax2+2x-1≤0在x>0恒成立.
則a≤$\frac{1-2x}{{x}^{2}}$在x>0恒成立,
即a≤[($\frac{1}{x}$-1)2-1]min,x>0,
當x=1時,($\frac{1}{x}$-1)2-1取最小值-1,
∴a的取值范圍是(-∞,-1];
(2)a=-$\frac{1}{2}$,f(x)=-$\frac{1}{2}$x+b,
∴$\frac{1}{4}$x2-$\frac{3}{2}$x+lnx-b=0
設g(x)=$\frac{1}{4}$x2-$\frac{3}{2}$x+lnx-b(x>0)
則g'(x)=$\frac{(x-2)(x-1)}{2x}$,
列表:
x | (0,1) | 1 | (1,2) | 2 | (2,4) |
g′(x) | + | 0 | - | 0 | + |
g(x) | ↑ | 極大值 | ↓ | 極小值 | ↑ |
點評 本題主要考查函數(shù)單調性與其導函數(shù)正負之間的關系,即當導函數(shù)大于0時原函數(shù)單調遞增,當導函數(shù)小于0時原函數(shù)單調遞減.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,+∞) | B. | [$\frac{1}{2}$,+∞) | C. | ($\frac{1}{2}$,1) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 8$\sqrt{17}$ | C. | 2 | D. | $\frac{8\sqrt{17}}{17}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.2 | B. | 0.3 | C. | 0.7 | D. | 與σ的值有關 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com