3.已知點(x,y)在如圖所示的平面區(qū)域(陰影部分)內(nèi)運動,則z=x+y的最大值是5.

分析 利用目標(biāo)函數(shù)的幾何意義求最大值即可.

解答 解:由已知,目標(biāo)函數(shù)變形為y=-x+z,
當(dāng)此直線經(jīng)過圖中點(3,2)時,在y軸的截距最大,使得z最大,所以z的最大值為3+2=5;
故答案為:5.

點評 本題考查了簡單線性規(guī)劃問題中求目標(biāo)函數(shù)的最值;關(guān)鍵是明確幾何意義,利用數(shù)形結(jié)合求最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如表為某公司員工工作年限x(年)與平均月薪y(tǒng)(千元)對照表.已知y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=0.7x+0.35,則下列結(jié)論錯誤的是( 。
x3456
y2.5t44.5
A.回歸直線一定過點(4.5,3.5)
B.工作年限與平均月薪呈正相關(guān)
C.t的取值是3.5
D.工作年限每增加1年,工資平均提高700元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=ax3+3x2+2,若f′(-1)=3,則a的值是( 。
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|2x-1|+x+$\frac{1}{2}$的最小值為m.
(1)求m的值;
(2)若a,b,c是正實數(shù),且a+b+c=m,求證:2(a2+b2+c2)≥ab+bc+ca-3abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合A={x∈R|y=lg(2-x)},B={y∈R|y=2x-1},則∁R(A∩B)=( 。
A.RB.(-∞,0]∪[2,+∞)C.[2,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{1}{2}a{x^2}-(a+1)x+lnx$,$g(x)={x^2}-2bx+\frac{7}{8}$.
(1)當(dāng)a<1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)$a=\frac{1}{4}$時,函數(shù)f(x)在(0,2]上的最大值為M,若存在x∈[1,2],使得g(x)≥M成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.f(x)=3tanx的最小正周期為(  )
A.B.C.πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時,f'(x)g(x)+f(x)g'(x)>0,且g(-1)=0,則不等式f(x)g(x)>0的解集是( 。
A.(-1,0)∪(0,1)B.(-∞,1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下面說法中不正確的命題個數(shù)為是( 。
?①命題“?x∈R,x2-x+1≤0”的否定是“$?{x_0}∈R,{x_0}^2-{x_0}+1>0$”;
?②若“p∨q”為假命題,則p,q均為假命題;
?③“mn>0”是“方程mx2+ny2=1表示橢圓”的充分不必要條件.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案