14.若x,y滿足$\left\{\begin{array}{l}{x+y≥0}\\{x≥1}\\{x-y≥0}\end{array}\right.$,則下列不等式恒成立的是( 。
A.y≥0B.x≥2C.2x-y+1≥0D.x+2y+1≥0

分析 畫出不等式組$\left\{\begin{array}{l}{x+y≥0}\\{x≥1}\\{x-y≥0}\end{array}\right.$表示的平面區(qū)域,
在同一平面直角坐標(biāo)系中畫出y≥0,x≥2,2x-y+1≥0和x+2y+1≥0,
根據(jù)不等式組表示的平面區(qū)域在2x-y+1≥0所表示的區(qū)域內(nèi),求得結(jié)論.

解答 解:畫出不等式組$\left\{\begin{array}{l}{x+y≥0}\\{x≥1}\\{x-y≥0}\end{array}\right.$表示的平面區(qū)域,如下;

在同一平面直角坐標(biāo)系中畫出y≥0,x≥2,2x-y+1≥0和x+2y+1≥0,
則不等式組表示的平面區(qū)域在2x-y+1≥0所表示的區(qū)域內(nèi),
∴不等式2x-y+1≥0恒成立.
故選:C.

點(diǎn)評 本題考查了二元一次不等式組表示平面區(qū)域的應(yīng)用問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.方程(x+y-3)$\sqrt{{y}^{2}-4x}$=0表示的曲線是( 。
A.兩條射線B.拋物線和一條線段
C.拋物線和一條直線D.拋物線和兩條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知F(1,0),直線l:x=-1,P為平面上的動(dòng)點(diǎn),過點(diǎn)P作l的垂線,垂足為點(diǎn)Q,且$\overrightarrow{QP}$•$\overrightarrow{QF}$=$\overrightarrow{FP}$•$\overrightarrow{FQ}$.
(1)求動(dòng)點(diǎn)P的軌跡G的方程;
(2)點(diǎn)F關(guān)于原點(diǎn)的對稱點(diǎn)為M,過F的直線與G交于A、B兩點(diǎn),且AB不垂直于x軸,直線AM交曲線G于C,直線BM交曲線C于D.
①證明直線AB與曲線CD的傾斜角互補(bǔ);
②直線CD是否經(jīng)過定點(diǎn)?若經(jīng)過定點(diǎn),求出這個(gè)定點(diǎn),否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:t=$\frac{π}{2}$,命題q:${∫}_{0}^{t}$sinxdx=1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥1\\ mx-y≤0\\ 2x-y+2≥0\end{array}\right.$,若z=3x-y的最大值為1,則m的值為( 。
A.$\frac{8}{3}$B.2C.1D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.△ABC的內(nèi)角A,B,C所對的邊分別是a,b,c,若a=2,b=3,∠C=2∠A.
(I)求c的值;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點(diǎn)$({2,\sqrt{3}})$在雙曲線$\frac{x^2}{4}-\frac{y^2}{a}=1({a>0})$的一條浙近線上,則a=( 。
A.$\sqrt{3}$B.3C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是首項(xiàng)${a_1}=\frac{1}{3}$,公比$q=\frac{1}{3}$的等比數(shù)列.設(shè)${b_n}=2{log_{\frac{1}{3}}}{a_n}-1$(n∈N*).
(Ⅰ)求證:數(shù)列{bn}為等差數(shù)列;
(Ⅱ)設(shè)cn=an+b2n,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a>0,b>0,則“l(fā)og2a>log2b”是“${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案