分析 討論直線是否有斜率,聯(lián)立方程組,利用焦點弦公式和根與系數(shù)的關(guān)系得出不等式解出斜率的范圍,即可得出傾斜角的范圍.
解答 解:拋物線的準線方程為x=-1,焦點坐標為(1,0),
(1)若過焦點的直線無斜率,則直線方程為x=1,代入y2=4x得y=±2,
此時弦長為4,符合題意.
(2)若過焦點的直線有斜率,設(shè)直線方程為y=k(x-1),
聯(lián)立方程組$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,消去y得k2x2-(2k2+4)x+k2=0,
設(shè)直線與拋物線交點為A(x1,y1),B(x2,y2),則x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$,
∴|AB|=x1+x2+2=4+$\frac{4}{{k}^{2}}$,
∵|AB|≤8,即4+$\frac{4}{{k}^{2}}$≤8,解得k≥1或k≤-1,
∴$\frac{π}{4}$$≤α<\frac{π}{2}$或$\frac{π}{2}<α≤\frac{3π}{4}$.
綜上,$\frac{π}{4}$≤α≤$\frac{3π}{4}$.
故答案為:[$\frac{π}{4}$,$\frac{3π}{4}$].
點評 本題考查了拋物線的性質(zhì),直線與拋物線的關(guān)系,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,3] | B. | [$\sqrt{6}$,3$\sqrt{6}$] | C. | [$\frac{3\sqrt{6}}{2}$,4$\sqrt{6}$] | D. | [$\sqrt{6}$,4$\sqrt{6}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sinx+cosx | B. | y=cos4x-sin4x | C. | y=cos|x| | D. | y=$\frac{tanx}{1-ta{n}^{2}x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 1 | C. | -$\sqrt{3}$ | D. | -1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com