A. | $\{x\left|{-5<x<\frac{1}{3}}\right.\}$ | B. | $\{x\left|{-3<x<\frac{5}{3}}\right.\}$ | C. | $\{x\left|{-5<x<\frac{7}{3}}\right.\}$ | D. | $\{x\left|{\frac{1}{3}<x<2}\right.\}$ |
分析 畫出函數(shù)f(x)的圖象,設3x+1=t,不等式f(3x+1)<4,則f(t)<4,求出t的范圍,即可求出x的范圍
解答 Q解:畫出函數(shù)f(x)的圖象,
設3x+1=t,
不等式f(3x+1)<4.
則f(t)<4,
由圖象可知,
$\left\{\begin{array}{l}{t<2}\\{lo{g}_{2}(2-t)<4}\end{array}\right.$或$\left\{\begin{array}{l}{t≥2}\\{{t}^{\frac{2}{3}<4}}\end{array}\right.$,
解得-14<t<2,2≤t<8,
∴-14<3x+1<8,
解得-5<x<$\frac{7}{3}$,
故選:C
點評 本題考查了分段函數(shù)問題,以及不等式的解集問題,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{2}$,+∞) | B. | ($\frac{1}{2}$,1) | C. | (1,+∞) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com