11.已知圓C:(x-1)2+y2=9,點(diǎn)B(-4,0),若存在不同于點(diǎn)B的定點(diǎn)A,對(duì)于圓C任意一點(diǎn)P到定點(diǎn)A和點(diǎn)B的距離比為一個(gè)常數(shù),則此常數(shù)值為$\frac{3}{5}$.

分析 利用圓的定義,設(shè)出A,通過$\frac{PA}{PB}=λ$為一常數(shù)這一條件,以及P在圓上,列出關(guān)系,利用恒成立,可以求得結(jié)果.

解答 解:由圓的定義可知,存在這樣的點(diǎn)A(t,0),存在不同于點(diǎn)B的定點(diǎn)A,對(duì)于圓C任意一點(diǎn)P到定點(diǎn)A和點(diǎn)B的距離比為一個(gè)常數(shù),即使得$\frac{PA}{PB}$為常數(shù)λ,則PA22PB2,
∴(x-t)2+y22[(x+4)2+y2],即:(λ2-1)x2+(λ2-1)y2+(8λ2+2t)x+16λ2-t2=0,
圓C:(x-1)2+y2=9,可得:x2+y2-2x-8=0,
可得$\left\{\begin{array}{l}{{λ}^{2}-1=h}\\{8{λ}^{2}+2t=-2h}\\{16{λ}^{2}-{t}^{2}=-8h}\end{array}\right.$,
解得:t=-4(舍去)或t=-$\frac{4}{5}$.
λ=$\frac{3}{5}$.
則此常數(shù)值為:$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查直線和圓的方程的應(yīng)用,圓的切線方程,又是存在性和探究性問題,恒成立問題,考查計(jì)算能力.是難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圓x2+y2=1與圓(x+1)2+(y+4)2=16的位置關(guān)系是( 。
A.相外切B.相內(nèi)切C.相交D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某學(xué)校有長(zhǎng)度為14米的舊墻一面,現(xiàn)準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126m2的活動(dòng)室,工程條件是:
①建1m新墻的費(fèi)用為a元;
②修1m舊墻的費(fèi)用是$\frac{a}{4}$元;
③拆去1m舊墻所得的材料,建1m新墻的費(fèi)用為$\frac{a}{2}$元,經(jīng)過討論有兩種方案:
(1)問如何利用舊墻的一段x米(x<14)為矩形廠房的一面邊長(zhǎng);
(2)矩形活動(dòng)室的一面墻的邊長(zhǎng)x≥14,利用舊墻,即x為多少時(shí)建墻的費(fèi)用最?
(1)(2)兩種方案,哪種方案最好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若a,b∈R,i為虛數(shù)單位,且(2a+i)i=b+i,則a,b的值分別是( 。
A.a=$\frac{1}{2}$,b=1B.a=$\frac{1}{2}$,b=-1C.a=-$\frac{1}{2}$,b=1D.a=-$\frac{1}{2}$,b=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.定義域?yàn)镽的函數(shù)f(x)滿足f(0)=1,f′(x)<f(x)+1,則不等式$\frac{f(x)+1}{{e}^{x}}$<2的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示是求等比數(shù)列前n項(xiàng)和的流程圖,則空白處應(yīng)填(  )
A.q=1B.q≠1C.q>1D.q<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)y=f′(x)的導(dǎo)函數(shù),若方程f″(x0)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”,已知函數(shù)f(x)=3x+asinx-bcosx的拐點(diǎn)是M(x0,f(x0)),則點(diǎn)M( 。
A.在直線y=-3x上B.在直線y=3x上C.在直線y=-4x上D.在直線y=4x上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a∈R,函數(shù)$f(x)=\frac{{{e^x}-a}}{x}-alnx$(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)函數(shù)f(x)是否存在極大值,若存在,求極大值點(diǎn),若不存在,說明理由;
(Ⅱ)設(shè)$g(x)=\frac{e^x}{1+xlnx}$,證明:對(duì)任意x>0,g(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知tan(π+α)=3,求(sinα+cosα)2+$\frac{4sinα-2cosα}{cosα+3sinα}$的值;
(2)已知cos($\frac{π}{6}$-θ)=a(|a|≤1),求cos($\frac{5π}{6}$+θ)和sin($\frac{2π}{3}$-θ)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案