18.設函數(shù)f(x),g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論正確的是( 。
A.f(x)+g(x)是奇函數(shù)B.f(x)-g(x)是偶函數(shù)C.f(x)•g(x)是奇函數(shù)D.f(x)•g(x)是偶函數(shù)

分析 f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),得f(-x)=f(x),g(-x)=-g(x),令F(x)=f(x)g(x),驗證F(-x)與F(x)的關系.

解答 解:∵f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),
∴f(-x)=f(x),g(-x)=-g(x),
令F(x)=f(x)g(x)
F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x)
∴F(x)=f(x)g(x)為奇函數(shù).
故選:C.

點評 本題主要考查函數(shù)奇偶性的定義,屬于基本題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.設函數(shù)f(x)對x≠0的實數(shù)滿足$f(x)-2f({\frac{1}{x}})=-3x+2$,那么$\int_1^2{f(x)dx}$=2ln2-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)$f(x)=\sqrt{6-2x}+lg(x+2)$的定義域為集合A,B={x|x>3或x<2}.
(1)求A∩B;
(2)若C={x|x<2a+1},B∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知定義域為R的函數(shù)f(x)滿足$f(x-1)=2f(x+1)-{log_2}\sqrt{x}$,若f(1)=2,則f(3)=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=-x2+ax+b,且f(4)=-3.
(1)若函數(shù)f(x)在區(qū)間[2,+∞)上遞減,求實數(shù)b的取值范圍;
(2)若函數(shù)f(x)的圖象關于直線x=1對稱,且關于x的方程f(x)=log2m在區(qū)間[-3,3]上有解,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=x|lnx|的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an}的前n項和為Sn,且${S_n}=\frac{3}{2}{n^2}-\frac{1}{2}n({n∈{N^*}})$,數(shù)列{bn}滿足${a_n}=3{log_2}{b_n}-2({n∈{N^*}})$,則數(shù)列{an•bn}的前n項和Tn=10+(3n-5)2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.計算:
(1)${8^{\frac{1}{3}}}-{(6\frac{1}{4})^{\frac{1}{2}}}+{π^0}-{3^{-1}}$;
(2)$2{log_6}2+{log_6}9+\frac{3}{2}{log_3}\frac{1}{9}-{8^{\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=x3+3x2-9x+m
(1)求函數(shù)f(x)=x3+3x2-9x+m的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[0,2]上的最大值12,求函數(shù)f(x)在該區(qū)間上的最小值.

查看答案和解析>>

同步練習冊答案