分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
直線ax+y+a-1=a(x+1)+(y+1)=0,過定點(diǎn)D(-1,-1).
ax+y+a+1≥0恒成立等價(jià)為可行域都在直線ax+y+a+1=0的上方;則由圖象知只要B(1,0)滿足ax+y+a+1≥0即可,
即2a+1≥0,得a≥$-\frac{1}{2}$,
故答案為:$[-\frac{1}{2},+∞)$;
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)可行域與直線的關(guān)系結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -2 | C. | -1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{3}{5}$,$\frac{4}{5}$) | B. | ($\frac{3}{5}$,-$\frac{4}{5}$) | C. | (-$\frac{3}{5}$,-$\frac{4}{5}$) | D. | ($\frac{3}{5}$,$\frac{4}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1+i | B. | -1-i | C. | 1+i | D. | 1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com