17.當(dāng)實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$時(shí),ax+y+a+1≥0恒成立,則實(shí)數(shù)a的取值范圍是$[-\frac{1}{2},+∞)$.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
直線ax+y+a-1=a(x+1)+(y+1)=0,過定點(diǎn)D(-1,-1).
ax+y+a+1≥0恒成立等價(jià)為可行域都在直線ax+y+a+1=0的上方;則由圖象知只要B(1,0)滿足ax+y+a+1≥0即可,
即2a+1≥0,得a≥$-\frac{1}{2}$,
故答案為:$[-\frac{1}{2},+∞)$;

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)可行域與直線的關(guān)系結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2(x-3a)+1(a>0,x∈R)
(1)求函數(shù)y=f(x)的極值;
(2)函數(shù)y=f(x)在(0,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(3)若在區(qū)間(0,+∞)上存在實(shí)數(shù)x0,使得不等式f(x0)-4a3≤0能成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,則2x+y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,$AB=AC=\frac{1}{2}A{A_1}$,AB⊥AC,D是棱BB1的中點(diǎn).
(Ⅰ)證明:平面A1DC⊥平面ADC;
(Ⅱ)求平面A1DC與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,平面ABCD⊥平面BCF,四邊形ABCD是菱形,∠BCF=90°.
(1)求證:BF=DF;
(2)若∠BCD=60°,且直線DF與平面BCF所成角為45°,求二面角B-AF-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|x2+x-6>0},集合B={x|-1<x<3},若a∈(A∪B),則a可以是(  )
A.-3B.-2C.-1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A(1,-2),B(4,2),則與$\overrightarrow{AB}$反方向的單位向量為(  )
A.(-$\frac{3}{5}$,$\frac{4}{5}$)B.($\frac{3}{5}$,-$\frac{4}{5}$)C.(-$\frac{3}{5}$,-$\frac{4}{5}$)D.($\frac{3}{5}$,$\frac{4}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)復(fù)數(shù)z滿足(1+i)z=-2i,i為虛數(shù)單位,則z=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知各項(xiàng)均為正數(shù)的等差數(shù)列{an}滿足:a4=2a2,且a1,4,a4成等比數(shù)列,設(shè){an}的前n項(xiàng)和為Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列$\left\{{\frac{S_n}{{n•{2^n}}}}\right\}$的前n項(xiàng)和為Tn,求證:Tn<3.

查看答案和解析>>

同步練習(xí)冊答案