15.已知p:不等式x2+mx+1<0的解集為空集,q:函數(shù)y=4x2+4(m-1)x+3無極值,若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

分析 先求出使命題p,q成立的條件,若p∨q為真命題,p∧q為假命題可知p,q一真一假,分兩種情況分別求解,最后將結(jié)果合并.

解答 解:命題p真時(shí):一元二次方程x2+mx+1≥0恒成立,則△=m2-4≤0,解得:-2≤m≤2;
若q為真時(shí):等價(jià)于y′=12x2+4(m-1)≥0恒成立,可得m≥1;
若p∨q為真,p∧q為假,則p,q一真一假,
若p真q假,則m<1且-2≤m≤2,此時(shí)-2≤m<1.
若p假q真,則m≥1且m<-2或m>2,此時(shí)m>2.
所以實(shí)數(shù)m的取值范圍-2≤m<1或m>2.

點(diǎn)評(píng) 本題考查復(fù)合命題成立的條件,這類題目要轉(zhuǎn)化到兩個(gè)簡(jiǎn)單命題的真假性條件.要有邏輯思維能力,分類討論的意識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.直線l與雙曲線x2-4y2=4相交于A、B兩點(diǎn),若點(diǎn)P(4,1)為線段AB的中點(diǎn),則直線l的方程是x-y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)判斷f(x)的單調(diào)性,并求f(x)的極值;
(Ⅱ)求證:當(dāng)x≥1時(shí),$\frac{(x+1)(1+lnx)}{x}$≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為${F_1},{F_2},{a^2}+{b^2}=4$,短軸端點(diǎn)B與兩焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形面積最大時(shí),橢圓的短半軸長(zhǎng)為(  )
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某大學(xué)生從全校學(xué)生中隨機(jī)選取100名統(tǒng)計(jì)他們的鞋碼大小,得到如下數(shù)據(jù):
鞋碼 35  36 37 3839  4041 42  43 44 合計(jì)
男生 -- 3 6 8 11 12 6 7 2 55
 女生 4 6 12 9 9 2 2-- 1 45
(1)某鞋店計(jì)劃采購某種款式的女鞋1000雙,則其中38號(hào)鞋應(yīng)有多少雙?
(2)完成頻率分布直方圖,并估計(jì)該校學(xué)生的平均鞋碼.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.中國古代名詞“芻童”原來是草堆的意思,古代用它作為長(zhǎng)方棱臺(tái)(上、下底面均為矩形的棱臺(tái))的專用術(shù)語,關(guān)于“芻童”體積計(jì)算的描述,《九章算術(shù)》注曰:“倍上袤,下袤從之,亦倍下袤,上袤從之,各以其廣乘之,皆六而一.”其計(jì)算方法是:將上底面的長(zhǎng)乘二,與下底面的長(zhǎng)相加,再與上底面的寬相乘,將下底面的長(zhǎng)乘二,與上底面的長(zhǎng)相加,再與下底面的寬相乘,把這兩個(gè)數(shù)值相加,與高相乘,再取其六分之一,依此算法,現(xiàn)有上、下底面為相似矩形的棱臺(tái),相似比為$\frac{1}{2}$,高為3,其上底面的周長(zhǎng)為6,則該棱臺(tái)的體積的最大值為( 。
A.14B.56C.$\frac{63}{4}$D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,向量$\overrightarrow{m}$=(a+b,$\sqrt{3}$a-c),$\overrightarrow{n}$=(sinC,sinA-sinB),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(1)求角B的大小
(2)若A=$\frac{π}{6}$,角B的平分線與AC邊交于點(diǎn)D,且BD=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-2≥0\\ x+2y-4≤0\end{array}\right.$,則x2+y2的最小值為( 。
A.0B.$\frac{4}{5}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(2m+1,3,m-1),$\overrightarrow$=(2,m,2),且$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)m的值等于-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案