A. | 3 | B. | $\sqrt{3}$ | C. | -3 | D. | -$\sqrt{3}$ |
分析 由題意可得四邊形OBAC是邊長為2的菱形,且∠ABO=∠ACO=60°,∠ACB=$\frac{1}{2}$∠ACO=30°,可得向量$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影為:|$\overrightarrow{AC}$|•cos∠ACB,計算求的結(jié)果.
解答 解:△ABC的外接圓的圓心為O,半徑為2,且$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,∴$\overrightarrow{OB}$=$\overrightarrow{CA}$,
∴OBAC為平行四邊形.
∵△ABC的外接圓的圓心為O,半徑為2,得|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|=|$\overrightarrow{OB}$|,
∴四邊形OBAC是邊長為2的菱形,且∠ABO=∠ACO=60°,
因此,∠ACB=$\frac{1}{2}$∠ACO=30°,
∴向量$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影為:|$\overrightarrow{AC}$|•cos∠ACB=2cos30°=$\sqrt{3}$,
故選:B.
點評 本題給出三角形外接圓滿足的向量等式,求向量的投影,著重考查了向量的加法法則、向量數(shù)量積的運算性質(zhì)和向量在幾何中的應(yīng)用等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com