16.如圖,梯形ABCD中,AD∥BC,∠ABC=90°,AD=1,BC=2,∠DCB=60°,在平面ABCD內過點C作l⊥CB,將梯形ABCD以l為軸旋轉一周
(1)求旋轉體的體積;
(2)求旋轉體的表面積.

分析 (1)旋轉后形成的幾何體為圓柱中挖去一個倒放的與圓柱等高的圓錐,由此能求出旋轉體的體積.
(2)先求出圓柱的側面積、底面積,再求出圓錐的側面積、底面積和旋轉體上底面的面積,由此能求出結果.

解答 解:(1)旋轉后形成的幾何體為圓柱中挖去一個倒放的與圓柱等高的圓錐,
$CD=\frac{BC-AD}{cos60°}=2,AB=CDsin60°=\sqrt{3}$,
∴小圓錐的半徑r=BC-AD=1,
$圓柱的體積{V_1}=π{R^2}h=π×{2^2}×\sqrt{3}=4\sqrt{3}π$,
$圓錐的體積{V_2}=\frac{1}{3}π{r^2}h=\frac{1}{3}π×{1^2}×\sqrt{3}=\frac{{\sqrt{3}}}{3}π$,
∴$旋轉體的體積V={V_1}-{V_2}=4\sqrt{3}π-\frac{{\sqrt{3}}}{3}π=\frac{{11\sqrt{3}}}{3}π$…(5分)
$(2)圓柱的側面積{S_1}=2πRl=2π×2×\sqrt{3}=4\sqrt{3}π$
圓錐的側面積S2=πrl=π×1×2=2π,
$圓柱的底面積{S_3}=π{R^2}=π×{2^2}=4π$,
$圓錐的底面積{S_4}=π{r^2}=π×{1^2}=π$,
旋轉體上底面的面積S5=S3-S4=3π,
∴$旋轉體的表面積={S_1}+{S_2}+{S_3}+{S_5}=(4\sqrt{3}+9)π$.…(12分)

點評 本題考查旋轉體的體積和表面積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.集合A={x|-3<x<7},B={x|t+1<x<2t-1},若B⊆A,則實數(shù)t的取值范圍是(-∞,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.圖中的陰影表示的集合中是( 。
A.A∩∁UBB.B∩∁UAC.U(A∩B)D.U(A∪B)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.某單位為了了解用電量y(度)與氣溫X(0C)之間的關系,隨機統(tǒng)計了某4天的用電量與當天氣溫,并作了如下的對照表:由表中數(shù)據(jù),得回歸直線方程$\hat y$=$\hat bx$+$\hat a$,若$\hat b$=-2,則$\hat a$=(  )
氣溫X(0C)181310-1
用電量y24343864
A.60B.58C.62D.64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知y=f(x)的定義域為R的偶函數(shù),當x≥0時,f(x)=$\left\{\begin{array}{l}{\frac{5}{4}sin\frac{π}{4}x,0≤x≤2}\\{(\frac{1}{2})^{x}+1,x>2}\end{array}\right.$,若關于x的方程[f(x)]2+af(x)+b=0(a,b∈R)有且僅有6個不同的實數(shù)根,在實數(shù)a的取值范圍是(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,則該四棱錐的外接球的半徑為(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若函數(shù)f(x)=axsinx-$\frac{3}{2}({a∈R})$,且在區(qū)間$[{0,\frac{π}{2}}]$上的最大值為$\frac{π-3}{2}$,則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,我海監(jiān)船在D島海域例行維權巡航,某時刻航行至A處,此時測得其東北方向與它相距32海里的B處有一外國船只,且D島位于海監(jiān)船正東28$\sqrt{2}$海里處.
(1)求此時該外國船只與D島的距離;
(2)觀測中發(fā)現(xiàn),此外國船只正以每小時8海里的速度沿正南方向航行,為了將該船攔截在離D島24海里處,不讓其進入D島24海里內的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):sin36°52'≈0.6,sin53°08'≈0.8)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知右焦點為F(c,0)的橢圓M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點$(1,\frac{3}{2})$,且橢圓M關于直線x=c對稱的圖形過坐標原點.
(1)求橢圓M的方程;
(2)過點(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點,點Q關于x軸的對稱原點為E,證明:直線PE與x軸的交點為F.

查看答案和解析>>

同步練習冊答案