2.i是虛數(shù)單位,復數(shù)z=${({\frac{3-i}{1+i}})^2}$,則復數(shù)z的共軛復數(shù)表示的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用復數(shù)代數(shù)形式的乘除運算化簡求得z,進一步得到$\overline{z}$得答案.

解答 解:∵z=${({\frac{3-i}{1+i}})^2}$=$[\frac{(3-i)(1-i)}{(1+i)(1-i)}]^{2}=(\frac{2-4i}{2})^{2}=(1-2i)^{2}=-3-4i$,
∴$\overline{z}=-3+4i$.
∴復數(shù)z的共軛復數(shù)表示的點的坐標為(-3,4),在第二象限.
故選:B.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.設數(shù)列{an}的前n項和為Sn,對任意n∈N*,函數(shù)f(x)=x2-Sncosx+2an-n在定義域內(nèi)有唯一的零點.若不等式$\frac{λ}{n}$≥$\frac{n+1}{{a}_{n}+1}$對任意n∈N*恒成立,則實數(shù)λ的最小值是(  )
A.1B.$\frac{5}{4}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.四棱錐P-ABCD中,PA⊥底面ABCDD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°,M是CD上的點,Q點是PC上的點,平面BMQ∥平面PAD.
(1)求$\frac{QM}{PD}$;
(2)求直線BC與平面PCD所成角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若曲線y=$\sqrt{4-{x^2}}$+1與直線y=k(x-2)+4有兩個交點,則實數(shù)k的取值范圍是(  )
A.$({\frac{5}{12},\frac{3}{4}}]$B.$[{\frac{5}{12},+∞})$C.$({0,\frac{5}{12}}]$D.$({\frac{1}{3},\frac{1}{4}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知兩條坐標軸是圓C1:(x-1)2+(y-1)2=1與圓C2的公切線,且兩圓的圓心距是3$\sqrt{2}$,求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知直線l:x-y+3=0與圓C:(x+1)2+y2=2,則直線l與圓C的位置關系為相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.計算下列各式的值
(1)${8}^{\frac{2}{3}}$•($\frac{1}{3}$)3•$(\frac{16}{81})^{-\frac{3}{4}}$
(2)log535+$2lo{g}_{\frac{1}{2}}\sqrt{2}-lo{g}_{5}\frac{1}{50}-lo{g}_{5}14$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.(1)求函數(shù)f(x)=sin2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域.
(2)求函數(shù)$y=tan(\frac{x}{2}+\frac{π}{3})$的定義域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)y=x2+sinx的導函數(shù)y′=2x+cosx.

查看答案和解析>>

同步練習冊答案