【題目】下列命題中
①函數f(x)=( )x的遞減區(qū)間是(﹣∞,+∞);
②若函數f(x)= ,則函數定義域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正確命題的序號為 .
【答案】①③
【解析】解:①∵0 1,∴函數f(x)=( )x的遞減區(qū)間是(﹣∞,+∞),正確;
②若函數f(x)= ,則x﹣1≥0,x≥1,∴函數定義域是[1,+∞),不正確;
③已知(x,y)在映射f下的象是(x+y,x﹣y),3+1=4,3﹣1=2,那么(3,1)在映射f下的象是(4,2),正確.
所以答案是:①③.
【考點精析】掌握映射的相關定義是解答本題的根本,需要知道對于映射f:A→B來說,則應滿足:(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象;注意:映射是針對自然界中的所有事物而言的,而函數僅僅是針對數字來說的.所以函數是映射,而映射不一定的函數.
科目:高中數學 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)已知一個圓過直線與圓的兩個交點,且面積最小,求此圓的方程;
(2)拋物線的頂點在原點,以橢圓的右焦點為焦點,過點的直線與拋物線有且僅有一個公共點,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】莫數學建模興趣小組測量某移動信號塔的高度(單位: ),如圖所示,垂直放置的標桿的高度,仰角, .
(Ⅰ)該小組已經測得一組的值, , ,請推測的值;
(Ⅱ)該小組對測得的多組數據分析后,發(fā)現適當調節(jié)標桿到信號塔的距離(單位: ),使得較大時,可以提高信號塔測量的精確度,若信號塔高度為,試問為多大時, 最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機械廠今年進行了五次技能考核,其中甲、乙兩名技術骨干得分的平均分相等,成績統(tǒng)計情況如莖葉圖所示(其中是09的某個整數)
(1)若該廠決定從甲乙兩人中選派一人去參加技能培訓,從成績穩(wěn)定性角度考慮,你認為誰去比較合適?
(2)若從甲的成績中任取兩次成績作進一步分析,在抽取的兩次成績中,求至少有一次成績在(90,100]之間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某產品的三個質量指標分別為x,y,z,用綜合指標S=x+y+z評價該產品的等級.若S≤4, 則該產品為一等品.先從一批該產品中,隨機抽取10件產品作為樣本,其質量指標列表如下:
產品編號 | A1 | A2 | A3 | A4 | A5 |
質量指標 (x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產品編號 | A6 | A7 | A8 | A9 | A10 |
質量指標 (x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(1)利用上表提供的樣本數據估計該批產品的一等品率;
(2)在該樣本的一等品中, 隨機抽取2件產品,
(ⅰ) 用產品編號列出所有可能的結果;
(ⅱ) 設事件B為“在取出的2件產品中, 每件產品的綜合指標S都等于4”, 求事件B發(fā)生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函數f(x)的解析式;
(2)若函數g(x)= 畫出函數g(x)圖象;
(3)求函數g(x)在[﹣3,1]的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2ax+2,
(1)求實數a的取值范圍,使函數y=f(x)在區(qū)間[﹣5,5]上是單調函數;
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達式并判斷其奇偶性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,點 的極坐標是,曲線 的極坐標方程為.以極點為坐標原點,極軸為 軸的正半軸建立平面直角坐標系,斜率為 的直線 經過點.
(1)寫出直線 的參數方程和曲線 的直角坐標方程;
(2)若直線 和曲線相交于兩點,求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com