精英家教網 > 高中數學 > 題目詳情

【題目】下列命題中
①函數f(x)=( x的遞減區(qū)間是(﹣∞,+∞);
②若函數f(x)= ,則函數定義域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正確命題的序號為

【答案】①③
【解析】解:①∵0 1,∴函數f(x)=( x的遞減區(qū)間是(﹣∞,+∞),正確;
②若函數f(x)= ,則x﹣1≥0,x≥1,∴函數定義域是[1,+∞),不正確;
③已知(x,y)在映射f下的象是(x+y,x﹣y),3+1=4,3﹣1=2,那么(3,1)在映射f下的象是(4,2),正確.
所以答案是:①③.
【考點精析】掌握映射的相關定義是解答本題的根本,需要知道對于映射f:A→B來說,則應滿足:(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象;注意:映射是針對自然界中的所有事物而言的,而函數僅僅是針對數字來說的.所以函數是映射,而映射不一定的函數.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)已知一個圓過直線與圓的兩個交點,且面積最小,求此圓的方程;

(2)拋物線的頂點在原點,以橢圓的右焦點為焦點,過點的直線與拋物線有且僅有一個公共點,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】莫數學建模興趣小組測量某移動信號塔的高度(單位: ),如圖所示,垂直放置的標桿的高度,仰角 .

(Ⅰ)該小組已經測得一組的值, , ,請推測的值;

(Ⅱ)該小組對測得的多組數據分析后,發(fā)現適當調節(jié)標桿到信號塔的距離(單位: ),使得較大時,可以提高信號塔測量的精確度,若信號塔高度為,試問為多大時, 最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某機械廠今年進行了五次技能考核,其中甲、乙兩名技術骨干得分的平均分相等,成績統(tǒng)計情況如莖葉圖所示(其中09的某個整數)

1)若該廠決定從甲乙兩人中選派一人去參加技能培訓,從成績穩(wěn)定性角度考慮,你認為誰去比較合適?

2)若從甲的成績中任取兩次成績作進一步分析,在抽取的兩次成績中,求至少有一次成績在(90,100]之間的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某產品的三個質量指標分別為x,y,z,用綜合指標Sxyz評價該產品的等級.若S≤4, 則該產品為一等品.先從一批該產品中,隨機抽取10件產品作為樣本,其質量指標列表如下:

產品編號

A1

A2

A3

A4

A5

質量指標

(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產品編號

A6

A7

A8

A9

A10

質量指標

(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的樣本數據估計該批產品的一等品率;

(2)在該樣本的一等品中, 隨機抽取2件產品,

() 用產品編號列出所有可能的結果;

() 設事件B為“在取出的2件產品中, 每件產品的綜合指標S都等于4, 求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函數f(x)的解析式;
(2)若函數g(x)= 畫出函數g(x)圖象;
(3)求函數g(x)在[﹣3,1]的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+2ax+2,
(1)求實數a的取值范圍,使函數y=f(x)在區(qū)間[﹣5,5]上是單調函數;
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達式并判斷其奇偶性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在極坐標系中,點 的極坐標是,曲線 的極坐標方程為.以極點為坐標原點,極軸為 軸的正半軸建立平面直角坐標系,斜率為 的直線 經過點.

(1)寫出直線 的參數方程和曲線 的直角坐標方程;

(2)若直線 和曲線相交于兩點,求的值.

查看答案和解析>>

同步練習冊答案